Kilonovae, Nuclear Physics, and Observations

Jennifer Barnes NASA Einstein Fellow Columbia University

> *EMMI Rapid Reaction Task Force* June 13, 2018

Image: AEI Potsdam-Golm

The kilonova-nuclear physics connection(s)

Nuclear physics questions:

- How is mass ejection affected by NS EOS?
- How is nucleosynthesis impacted by NS EOS/the central remnant
 - Weak interactions
- How is energy injected by radioactivity and how might this vary?
 - Power P(t)
 - Decay modes and spectra?

Goal: understand how all of this variation will affect the light curves/spectra of radioactive transients

tool of the trade: radiation transport

basics of radiation transport

(bolometric) light curves $E_{\rm rad}(t)$ **Energy from** radioactivity ergs/s

colors & spectra

 Quasi-blackbody with temperature set by the net effect of radioactivity, thermalization, photon absorption/ emission, and cooling Line-blanketing can affect the spectrum Individual features correspond to particular atoms or

ions

time

basics of radiation transport

(bolometric) light curves

colors & spectra

 Quasi-blackbody with temperature set by the net effect of radioactivity, thermalization, photon absorption/ emission, and cooling Line-blanketing can affect the spectrum Individual features correspond to particular atoms or

ions

basics of radiation transport

(bolometric) light curves

colors & spectra

- Quasi-blackbody with temperature set by the net effect of radioactivity, thermalization, photon absorption/ emission, and cooling
 Line-blanketing can affect the spectrum
- Individual features correspond to particular atoms or ions

determining the power input $\dot{E}_{\rm rad}(t)$

Analytic estimates are possible. Li & Paczyński (1998):

$$\dot{E}_{\rm rad}(t) = \frac{fc^2}{t}$$

(see also Hotokezaka+17)

Nuclear network calculations can determine the *total power* and the importance of *different decay modes and isotopes*. • requires measured or

calculated half-lives and decay energies

$\dot{E}_{\rm rad}(t)$ depends on, e.g., Y_e and mass model

- total heating rate (see below)
- division of heating into different decay channels

the *r*-process and kilonova thermalization

Thermal emission is **reprocessed kinetic energy**; thermalization efficiency sets the luminosity budget

thermalization efficiency depends on

- ejecta: mass, velocity, composition, magnetic fields
- decay products:
 - decay channel, decay timescales, emission spectrum

nuclear reaction networks to determine *r*-process yields

a case study: β -particles

Energy-loss channels:

- Bethe-Bloch
- Plasma losses
- Bremsstrahlung

Time-dependent $f_{\beta}(t)$

 for a range of ejecta properties

thermalization: effect on light curves

- Iower luminosity (especially for less massive ejecta)
- allows more better estimate of mass from observations

The role of α -decay

Luminosity (especially at late times) could indicate the importance of α -decay (or of fission!)

understanding opacities allows us to move beyond *L*_{bol}

We learn a lot from spectra and colors

- Line widths energy (velocity) of the ejecta
- Temperature evolution
- Absorption features

→ presence of particular elements or ions?

opacity is composition-dependent (part 1)

• Bound-bound opacity (cm² g⁻¹) sets the photon mean free path.

Sobolev optical depth sets interaction probability with a particular line

The **expansion opacity** determines the effective continuum opacity

opacity is composition-dependent

The *r*-process produces elements with atomic structures that are unique among explosively-synthesized compositions.

Simple analytic estimates:

opacity is composition-dependent

An open *f*-shell results in high atomic complexity

opacity is composition-dependent

- Atomic structure modeling compensates for missing data
- Lanthanides/actinides increase the opacity

toward a full set of lanthanide opacities

higher opacities lead to longer, dimmer, redder light curves

diffusion time: $t_{\text{diff}} \approx \left(\frac{M\kappa}{vc}\right)^{1/2}$ adiabatic losses: $E_{\text{phot}} \sim t^{-1}$

line blanketing at optical wavelengths

Uncertainties in synthetic atomic data

Uncertainties in synthetic atomic data

kilonova emission is tied to the strength of the *r*-process!

kilonova emission is tied to the strength of the *r*-process!

kilonova emission is tied to the strength of the *r*-process!

color \leftarrow opacity \leftarrow composition $\leftarrow Y_e$ NS EOS \leftarrow weak interactions \leftarrow

spectral identification: the next frontier!

