2nd Discussion Round Equation of State and Neutrinos

Jürgen Schaffner-Bielich

EMMI Rapid Reaction Task Force Meeting on The Physics of Neutron Star Mergers at GSI/FAIR GSI, Darmstadt, June November 4-15, 2018

Fischer et al. 2017

Phase diagram map for neutron star merger

Hanauske et al., in prep.

Supernova EoS and neutron matter EoS

Fischer, Hempel, Sagert, Suwa, JSB 2013

Russotto et al. 2016

parametrising our ignorance

Construct most generic family of NS-matter EOSs

Constraining tidal deformability

- LIGO has already set upper limit:
 - $\tilde{\Lambda}_{1.4} \lesssim 800$
- Our sample naturally sets a lower limit:

 $\Lambda_{1.4} > 375$

What about phase transitions?

- All EOSs so far are purely hadronic; a conservative but probably **reasonable** assumption.
- What about the possibility of **phase transitions**?
- These are not trivial but not too difficult to model.

Mass-radius relations

 Presence of a phase transition leads to second stable branch and "twin-star" models.

Classification of neutron star twins

Christian, Zacchi, JSB 2018

Constraining tidal deformability: PTs

- Can repeat considerations with EOSs having PTs
- Lower limit much weaker: $\tilde{\Lambda}_{1.4} \gtrsim 35$
- Large masses have sharp cut-off on upper limit:

 $\tilde{\Lambda}_{1.7} \lesssim 460$

GW detection with $\tilde{\Lambda}_{1.7} \sim 700$ would rule out twin stars!

Supernova EoS with a phase transition

Fischer, Bastian, Wu, Typel, Klähn, Blaschke 2017

Supernova EoS with a phase transition

Fischer, Bastian, Wu, Typel, Klähn, Blaschke 2017