Experimental Nuclear Physics for the r-Process Yuri A. Litvinov EMMI Rapid Reaction Task Force: The Physics of the Neutron Star Mergers at GSI/FAIR GSI, Darmstadt, Germany, 04-15 June 2018 # Where and how was gold cooked? ### **Masses and lifetimes at future facilities** # ph.SR] 12 May 2018 #### EMMI Rapid Reaction Task Force: The Physics of the Neutron Star Mergers at GSI/FAIR #### What is the uniqueness of GSI/FAIR? # Higher energy Storage rings r-Process Nucleosynthesis: Connecting Rare-Isotope Beam Facilities with the Cosmos C J Horowitz^{1,38}, A Arcones^{6,36,38}, B Côté^{4,31,38}, I Dillmann^{10,11,38}, W Nazarewicz^{4,23}, I U Roederer^{26,38}, H Schatz^{4,30,38}, A Aprahamian^{5,38}, D Atanasov⁷, A Bauswein⁸, J Bliss⁶, M Brodeur^{5,38}, J A Clark^{9,38}, A Frebel^{12,38}, F Foucart¹³, C J Hansen¹⁴, O Just^{37,15}, A Kankainen¹⁶, G C McLaughlin^{3,38}, J M Kelly⁵, S N Liddick^{17,30,38}, D M Lee^{12,18,19}, J Lippuner^{33,34,35,38}, D Martin⁶, J Mendoza-Temis^{20,21}, B D Metzger², M R Mumpower^{22,38}, G Perdikakis^{23,24,38}, J. Pereira^{30,38}, B W O'Shea^{4,32,38}, R Reifarth²⁵, A M Rogers²⁷, D M Siegel², A Spyrou^{4,30,38}, R Surman^{5,38}, X Tang²⁸, T Uesaka²⁹, M Wang²⁸ #### **Physics at Storage Rings** Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power Long storage times Very short lifetimes Direct mass measurements of exotic nuclei Radioactive decay of highly-charged ions Charge radii measurements [DR, scattering] Atomic levels in HCI (x-rays, DR...) **Experiments with isomeric beams [DR, reactions]** **Nuclear magnetic moments [DR]** In-ring nuclear reactions Reactions in Gamow window [(p,g), (a,g) ...] # **Secondary Beams of Short-Lived Nuclei** # Storage ring facilities at 📭 🎞 🎹 # Experimental Storage Ring (ESR) In operation since 1990 Circumference = 108.3 m Vacuum = 10⁻¹⁰—10⁻¹² mbar Electron, stochastic cooling Energy range = 4 – 400 MeV/u Slow and fast extraction # CRYRING (transported from Stockholm University) Planned start of operation (stable ions) – 2016 Planned start of operation (exotic nuclei) – 2017 Circumference = 54.15 m Vacuum = 10^{-11} — 10^{-12} mbar Electron cooling Energy range = ~0.1 – 15 MeV/u Slow and fast extraction **Courtesy Michael Lestinsky** #### **Heavy Ion Research Facility in Lanzhou (HIRFL)** **ASTRUm** **Experimental Cooler Storage Ring CSRe** CSR实验环闭环 # **BigRIPS + R3 Setup in RIKEN** #### FAIR - Facility for Antiproton and Ion Research #### HIAF: General description – Main components # **DERICA Project** ## Ion Beam Facilities / Trapping & Storage Worldwide Unique! #### **Stored and Cooled** Highly-Charged Ions (e.g. U⁹²⁺) and Exotic Nuclei From Rest to Relativistic Energies (up to 4.9 GeV/u) #### Direct Mass Measurements on the Chart of the Nuclides #### **SMS: Broad Band Frequency Spectra** #### **SMS: Broad Band Frequency Spectra** #### **SMS: Broad Band Frequency Spectra** #### **Nuclear Decays of Stored Single Ions** Time-resolved SMS is a perfect tool to study decays in the ESR EC, β +, β -, bound-state β , and IT decays were observed #### Discovery of ¹⁸⁴ⁿHf Isomer #### Physics cases ⇒ "Stellar lifetimes of SN isotopes" #### Mixed decay isotopes Co 56 77,26 d ϵ ; β ⁺ 1,5... γ 847; 1238; 2598; 1771; 1038... Ni 59 7,5 · 10⁴ a ϵ ; β ⁺ ... no γ ; σ 77,7 σ _{n, α} 12,3 σ _{n, α} 1,34 Secondary CR spallation products Primary SN isotopes #### Pure EC decay isotopes ## Mixed EC/ β -decay isotopes: s process - s-process "branchings" - Determines how much material is transferred to next isotope - Interior of stars: high recombination rates but also high temperatures - T≈30-1000 MK 6.1% EC/ 2.2% β⁺ 6.9% EC 28 (4)% EC 72.1% EC 60 (5)% EC 86 (3)% EC 7.47% EC 2.92% EC #### **β-delayed neutron emission probability** Important nuclear structure information P_n : β -strength above S_n $t_{1/2}(^{A}Z+1)$: sensitive to low-lying β -strength A. Evdokimov et al., Proc. NIC XI, PoS (NIC XII) 115 #### Search for Nuclear Excitation in Electron Capture process CRYRING: Slowing down to a few 10 keV/u Fast extraction towards an external Detection system ESR: Ability to prepare pure isomeric beams Slowing down to 4 MeV/u ## Astrophysics motivation: the p-process 35 stable neutron-deficient isotopes between ⁷⁴Se and ¹⁹⁶Hg Dominating reactions: (p,γ) for light nuclei; (γ,n) , (γ,p) , (γ,α) and β^+ decays for heavier nuclei Temperatures of $2-3 \times 10^9$ K during time scales of a few seconds are required (type II supernovae explosions) Network calculations more than 2000 nuclei (mostly unstable) more than 20000 reactions ## Reaction studies in a storage ring High revolution frequency → high luminosity even with thin targets Detection of ions via in-ring particle detectors → low background, high efficiency Well-known charge-exchange rates → in-situ luminosity monitor Ultra-thin windowless gas targets → excellent resolution Applicable to radioactive nuclei # ⁹⁶Ru(p,g)⁹⁷Rh Experiment at the ESR 400 Slowing down to ~10 MeV/u 96 Ru(p,g) 97 Rh Above (p,n) treshold $\sigma_{PG} \sim 4.0 \text{ mb}$ (Non-smoker: 3.5 mb) B. Mei et al, PRC 92 (2015) 35803 # ¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR Double-sided silicon strip detector installed directly into the UHV of the ESR ### The ¹²⁴Xe(p, γ) ¹²⁵Cs experiment - Data analysis - succesfull measurement of the proton-capture products - •by decreasing the beam energy: - \Rightarrow cross section of (p, γ) decreases - ⇒ background increases **ASTRUm** #### **Future measurements** E062 M. Heil et al. E108 R. Reifarth et al. E127 R. Reifarth et al. Regarding the proposal "Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process" (Proposal E127), the G-PAC recommends this proposal with **highest priority (A)** and that **15 shifts of main beam time** be allocated for this measurement. #### Neutron captures in inverse kinematics Neutron flux: 10^{14} n/cm²/s -> Neutron target: 2 10¹⁰ n/cm² 10⁷ ions, 1 MHz: 10¹³ ions/s Counts per day: 20 σ / mb Reifarth & Litvinov, Phys. Rev ST Accelerator and Beams, 17 (2014) 014701 Reifarth et al., Phys. Rev ST Accelerator and Beams, 20 (2017) 044701 # Where and how was gold cooked? #### Many-many thanks to all colleagues from all over the world !!!