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Food For Thoughts
• The importance of rates for the r-process nucleosynthesis
• The reaction model
• Optical model potential
• Direct radiative capture
• The Resolved Resonance Region

• The various ingredients to the calculations of rates
• Masses
• g-ray strength function
• Nuclear level densities

• Fission
• Fission paths and probability estimates
• Fission fragment distribution (nb of ejected neutrons)



(n,g), (g,n), b competition  &   Fission recycling

Nuclear needs for r-process nucleosynthesis

In all cases, nucleosynthesis requires RATES for some 5000 nuclei !

(and not only e-e nuclei, nor only spherical ones, nor those along the oversimplified 
so-called “r-process path”)

simulations rely almost entirely on theoretical predictions

• b-decay
• (n,g) rates and (g,n) rates
• Fission (nif, sf, bdf) rates
• Fission products distribution
• n-nucleon interaction

( + NP associated with initial cond.)
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Drastic impact on the resonant capture by exotic neutron-rich nuclei
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Impact on the r-process in the dynamical ejecta of binary NS mergers
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Impact on the r-process in the dynamical ejecta of binary NS mergers
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Impact on the r-process in the disk ejecta of binary NS mergers
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Questions raised

1. What is the neutron absorption (Imaginary W) by n-rich nuclei ?
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Direct captures
Direct scatter of incoming neutrons into a bound state without formation of 

a Compound Nucleus (particularly important for light and low-Sn n-rich nuclei)

Direct capture cross section calculated within the potential model

Final systemInitial system
E

Sn

n + (Z,A) (Z,A+1)

(Ef,Jf,pf)

with

reliable model, but requires a proper description of
– n-nucleus potential
– excitation spectrum (Ef,Jf,pf)
– spectroscopic factor C2S
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Questions raised

1. What is the neutron absorption by n-rich nuclei ?
2. What is the direct capture (and PE) contribution to the neutron-

capture rates ?



The High-Fidelity Resonance vs Hauser-Feshbach method 
to predict radiative n-capture cross section

HFR method: average parameters (the scattering radius, level spacing, reduced 
neutron width and the radiative width) are used to generate resolved resonances
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Questions raised

1. What is the neutron absorption by n-rich nuclei ?
2. What is the direct capture (and PE) contribution to the n-capture 

rates ?
3. What is the impact of RRR in n-rich nuclei on n-capture rates ? 



Nuclear inputs to nuclear reaction & decay calculations

Ground-state properties
(Masses, b2, matter densities, spl, pairing…)

Nuclear Level Densities
(E-, J-, p-dep., collective enh., …)

Fission properties
(barriers, paths, mass, yields, …)

Optical potential
(n-, p-, a-potential, def-dep)

g-ray strength function
(E1, M1, def-dep, T-dep, PC)

b-decay
(GT, FF, def-dep., PC)

STRONG ELECROMAGNETIC WEAK
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Nuclear inputs to nuclear reaction & decay calculations



Impact of the various ingredients on the radiative neutron capture (En~100keV)
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Questions raised

1. What is the neutron absorption by n-rich nuclei ?
2. What is the direct capture (and PE) contribution to the n-capture 

rates ?
3. What is the impact of RRR of n-rich nuclei on n-capture rates ?
4. Is it needed to develop competing “microscopic” models to 

replace macroscopic-type models ? 



Building blocks for the prediction of ingredients of relevance in the determination of 
nuclear reaction cross sections and b-decay rates, such as

• nuclear level densities
• g-ray strengths
• optical potentials
• fission probabilities
• etc …

Nuclear mass models provide all basic nuclear ingredients:
Mass excess (Q-values), deformation, GS spin and parity

but also the major nuclear structure properties
single-particle levels, pairing strength, density distributions, … in the GS 
as well as non-equilibrium (e.g fission path) configuration 

as well as for the (n,g)/(g, n) ratio & nuclear/neutron matter Equation of State

The criteria to qualify a mass model should NOT be restricted to the rms deviation 
wrt to exp. masses, but also include 
- the quality of the underlying physics (sound, coherent, “microscopic”, …)
- all the observables of relevance in the specific applications of interest (e.g astro)

Nuclear mass models
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Challenge for modern mass models: to reproduce as many observables as possible
- 2408 experimental masses from AME’2016  à rms ~ 500-800keV
- 782 exp. charge radii (rms ~ 0.03fm), charge distributions, as well as ~26 n-skins 
- Isomers & Fission barriers (scan large deformations)
- Symmetric infinite nuclear matter properties

• m* ~ 0.6 - 0.8 (BHF, GQR) & m*n(b) > m*p(b) 
• K ~ 230 - 250 MeV (breathing mode)
• Epot from BHF calc. & in 4 (S,T) channels
• Landau parameters Fl(S,T)

- stability condition: FlST > –(2l+1)
- empirical g0 ~ 0; g0’~ 0.9-1.2
- sum rules S1 ~ 0; S2 ~ 0

• Stability at finite momentum q
• Pairing gap (with/out medium effects)
• Pressure around 2-3r0 from heavy-ion collisions

-Infinite neutron matter properties
• J ~ 29 – 32MeV
• En/A from realistic BHF-like calculations
• Pairing gap 
• Stability of neutron matter at all polarizations

-Giant resonances
• ISGMR, IVGDR, ISGQR

-Additional model-dependent properties
• Nuclear Level Density (pairing-sensitive)
• Properties of the lowest 2+ levels (519 e-e nuclei)
• Moment of inertia in superfluid nuclei (back-bending)
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Recent Mic-Mac mass models

• FRDM’12 : update from FRDM’95 (Möller 2012)
• srms = 0.599 MeV  (2408 nuclei in AME’16)

• WS mass formula (Ning Wang et al. 2011)
• WS3: srms = 0.343 MeV  (2408 nuclei in AME’16)
• WS4: srms = 0.302 MeV  (2408 nuclei in AME’16)



Ecoll: Quadrupole Correlation corrections to restore broken symmetries
and include configuration mixing

Mean Field mass models

Skyrme-HFB Gogny-HFB

EW : Wigner correction contributes significantly only for nuclei along
the Z ~ N line (and in some cases for light nuclei)

Relativistic MF

E = EMF � Ecoll � EW � Eb1

Eb∞ : Correction for infinite basis

EMF : HFB or HF-BCS (or HB) main Mean-Field contribution

rms ~ 0.5-0.8MeV rms ~ 0.8MeV rms > 1.1MeV
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Impact of masses on the r-process nucleosynthesis in NS mergers

• GT2 b-decay rates with consistently estimated Qb
• n-capture rates estimated within the HF+PE+DC model (TALYS)



Questions raised

1. What is the neutron absorption by n-rich nuclei ?
2. What is the direct capture (and PE) contribution to the n-capture 

rates ?
3. What is the impact of RRR of n-rich nuclei on n-capture rates ?
4. Is it needed to develop competing “microscopic” models to 

replace macroscopic-type models ? 
5. How reliable are the present mass models ? What are the next 

steps ? 
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Sensitivity to the fission fragment distribution
along the A=278 isobar (from the N=184 closed shell)

GEF v1.4 
K. Schmidt et 
al. (2013) 

SPY:
S. Panebianco
et al. (2013) 

Parameter-free 
Scission Point 
model based on 
D1S potential
energy surfaces

Semi-empirical 
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Scission Point 
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Questions raised

1. What is the neutron absorption by n-rich nuclei ?
2. What is the direct capture (and PE) contribution to the n-capture 

rates ?
3. What is the impact of RRR of n-rich nuclei on n-capture rates ?
4. Is it needed to develop competing “microscopic” models to 

replace macroscopic-type models ? 
5. How reliable are the present mass models ? What are the next 

steps ? 
6. How well can we describe fission processes and FFD 

distributions ?
7. How to properly treat UNCERTAINTIES ?

…Still some work to be done …


