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Final Isotopic Abundances

2nd peak: xenon, silver 3rd peak: platinum, 
gold

BDM et al. 2010
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Metzger et al. 10
Roberts et al. 11

Fe or light r-nuclei

Heavy r-nuclei

Barnes & Kasen 13
Tanaka & Hotokezaka 13 

tpeak ~ 1 day

tpeak ~ 1 week

Kilonova Colors



texp ~ ms

Sources of Ejecta

Mej ~ 10-3 - 10-2 M


“Dynamical” Ejecta

vej ~ 0.2 - 0.3 c

Sekiguchi+16 

Accretion Disk Outflows

Mej = fwMd ~ 3x10-2 (fw/0.3) M


texp ~ 0.1-1 s

vej ~ 0.1 c

composition depends on 
NS lifetime

Collision Ejecta

Tidal Tails

Siegel & BDM17
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Magnetar Winds
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Lessons from the Kilonova

LESSON: Fast earliest ejecta has opacity 
similar to iron or light r-nuclei

(or is a tiny column of lanthanide-rich ejecta
masking a deeper energy source)



5500 K

3500 K

Nicholl+17
Chornock+17

Evolution to NIR indicates some lanthanides in deeper 
slower layers

neodinum

Spectral Evolution



Blue KN: 1.6x10-2 M
8

, v ~ 0.26 c
Red KN: 4x10-2 M

8
, v ~ 0.1 c

2 Component Model: Everybody’s Data on GW170817

Villar+18; Cowperthwaite+17



“Blue” + “Red” Kilonova Models


BDM & Fernandez 2014
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Red KN Ejecta from Disk Winds

Mred = 4x10-2 M
8

vred = 0.1 c

too much and too slow to 
be tidal tail

Siegel & BDM 17, 18



Effect of Long-Lived HMNS Remnant
BDM & Fernandez 2014



disk simulations of BDM & 
Fernandez 14
see also Just et al. 14

Non-zero lanthanide 
abundance suggests 
NS did not survive 

indefinitely in 
GW170817



Blue Ejecta Source?

high velocity vblue ~ 0.2-0.3 c      => 
ejecta from collision interface

ejecta mass
Mblue = 1.5x10-2 M

8

too large compared to GR 
simulations? M

e
j
(M

8
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Bauswein+13

BHNS BHNS

Sekiguchi+16



Blue Ejecta from Magnetar Wind?

Bd ~ few 1014 G
P ~ 0.8 ms
tcollapse ~ 0.1-1 seconds

Strong Magnetic Field enhances wind 
mass-loss rate and velocity

BDM, Thompson, Quataert 2018



Bucciantini, BDM et al. 2012

Jet

Magnetar
Wind

Merger 
Ejecta

It was not a stable magnetar….

more powerful magnetar jet



Extractable 
rotational energy

If a BH formed (eventually), SMNS disfavored
Energy stored in differential rotation can be lost to heat/neutrinos.
Energy stored in solid body rotation is harder to hide.
Sum of kilonova + GRB jet kinetic energies <~ 1051 ergs is 1-2 orders of 
magnitude less than a SMNS would need to lose to collapse into a BH.

Margalit & BDM 17
see Rezzolla+18, Ruiz+18




BUT: to translate into 
constraint on Mmax

assume cold EOS to 
elucidate HMNS-SMNS 
boundary 



Late-time Spitzer IR Detection

blackbody 
extrapolation

• Blackbody temperature of <~1200 K 
and luminosity  ~ 6-2 x 1038 erg s-1

• Probable origin: optically-thin 
nebular emission lines from 
radioactively heated ejecta

• Dust formation unlikely given low 
densities 

Late-time radioactive heating rate is sensitive 
to nuclear physics, e.g. nuclear mass model 
and fission channels

Barnes+16

Villar+, submitted



Kasen, Fernandez, BDM 2015

Same Event, Different Viewing Angle?

Kilonova light curves probe composition & geometry of merger ejecta



Kasen, Fernandez, BDM, 2015

Same Geometry, Different Binary Mass

“prompt collapse” long-lived NS

smaller binary mass, longer NS lifetime



The First Few Hours…

Metzger et al. 2015

BDM+15
NO neutrons

neutrons
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BDM+ 2018

“cocoon” emission  (e.g. 
Gottlieb+17; Kasliwal+17) 

Neutrons

“Jet” Reheating

BDM+15

The First Few Hours…
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Questions for Discussion
• Why was “blue” ejecta mass so high in GW170817?

– Small-ish NS radius? inadequate simulations? magnetar wind?

– How certain is ejecta mass?  How robust is nuclear heating?  What 
properties of nuclear physics inform this uncertainty?  

• How will edge-on merger appear?  Will blue KN be as bright?         
or will tidal tail block the polar ejecta?

• Did a BH actually form in GW170817?  How well can we tell in 
future GW events?

• What is the GW emission from a supramassive NS?  Can it compete 
with magnetic spin-down?  Coupling between neutrinos and MHD?

• What is the impact of a relativistic jet on the nucleosynthesis/KN?

• How will a BH-NS merger look differently than a BNS?





What can we say about integrated r-process 
abundances over age of universe?

Stochastic GW Background from 
Compact Binary Mergers

“all the chirps in the Universe”



Future of ground-based detectors

Binary NS mergers ~6-120 per year

Event rates ~10 times higher than ALIGO

NS Mergers to (z > 2) 
Many nearby high SNR > 100 sources.

Advanced LIGO (2020)

Cosmic Explorer (2030+)

LIGO A+ (2026)






