Kilonova

Observations and Modeling of GW170817/AT2017gfo

Masaomi Tanaka (Tohoku University, Japan)

GW170817

* The first detection of gravitational waves (GWs) from neutron star merger

* The first detection of electromagnetic (EM) signals from GW sources

Dawn of "multi-messenger" astronomy

Kilonova

Observations and Modeling of GW170817/AT2017gfo

Neutron star mergers and kilonova

• GW170817/AT2017gfo

• Open issues

Mass ejection from NS merger

Top view

Side view

Tidal disruptionShock heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c Sekiguchi+15, 16

Dynamical ejecta (~< 10 ms)

Mej >~ 10⁻² Msun v ~ 0.05 c Relatively high Ye

Mej ~ 10⁻³ - 10⁻² Msun v ~ 0.1-0.2 c Low Ye (w/ wide distr.)

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

Post-merger ejecta (~< 100 ms)

r-process nucleosynthesis in NS merger

Nuclear physics

Nuclear physics

Radioactive heating decay of many r-process nuclei => β decay (γ , β), α decay, fission

"Kilonova/Macronova"

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... **High opacity**: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

Timescale $t_{\text{peak}} = \left(\frac{3\kappa M_{\text{ej}}}{4\pi cv}\right)^{1/2}$ $\simeq 8.4 \text{ days } \left(\frac{M_{\text{ej}}}{0.01M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1c}\right)^{-1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{1/2}$ Luminosity $L_{\text{peak}} = L_{\text{dep}}(t_{\text{peak}})$ $\simeq 1.3 \times 10^{40} \text{ erg s}^{-1} \left(\frac{M_{\text{ej}}}{0.01M_{\odot}}\right)^{0.35} \left(\frac{v}{0.1c}\right)^{0.65} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$

Temperature ~ 5000 K =>

bound-bound transitions of heavy elements

Atomic physics

**** Lpeak

tpeak

Light curves of kilonova

Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Model: MT+17a

If post-merger ejecta is Lanthanide-free (Ye >~ 0.25) => low opacity => "blue kilonova" Metzger+14, Kasen+15

MT+18

Dynamical ejecta (~< 10 ms)

Mej ~ 10⁻³ - 10⁻² Msun v ~ 0.1-0.2 c Low Ye (w/ wide distr.) => Red kilonova?

Post-dynamical ejecta (~< 100 ms)

Mej >~ 10⁻³ Msun v ~ 0.05 c Relatively high Ye => Blue kilonova?

Kilonova

Observations and Modeling of GW170817/AT2017gfo

Neutron star mergers and kilonova

• GW170817/AT2017gfo

• Open issues

2017 Aug 17

GW170817: The first detection of GWs from a NS merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Abbott et al. 2017, ApJ

Gamma-rays @ ~2 sec after the merger

Gamma-ray burst (GRB) - NS merger connection

But the luminosity is lower than usual by >10³

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

Summary of multi-messenger observations

Abbott+17

GRB X-ray UV/optical/ infrared (kilonova)

GWs

Radio

GW170817: optical/infrared light curves

- Brightness
- Timescale
- SED

Arcavi+17, Cowperthwaite+17, Diaz+17, Drout+17,Evans+17, Kasliwal+17,Pian+17, Smartt+17, Tanvir+17, Troja+17, Utsumi, MT+17, Valenti+17

Signature of lanthanide production Ejecta mass ~0.03 Msun (w/ ~1% of lanthanides)

GW170817: Spectra

Smooth spectra (high velocity)
Not similar to any kind of known supernovae

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Presence of blue comp

Kasen+17, Metzger 17, MT+17

Signature of high Ye material => wide range of r-process M ~ 0.02 Msun

Origin of r-process elements

Rosswog+17, Hotokezaka+15, 18

Not clear whether GW170817 produced solar ratios

- **Observational signatures** - some lanthanides
- some lighter elements

Hotokezaka+18

Kilonova

Observations and Modeling of GW170817/AT2017gfo

Neutron star mergers and kilonova

• GW170817/AT2017gfo

Open issues

Open questions (only a part)

1. Mass ejection

- Origins of red/blue components?
- Uncertainty in estimated masses?

2. Abundance pattern

- Similar to solar abundances? (Produce 1st peak? 3rd peak?)
- How to identify spectral features?

 Blue kilonova
 <= post-merger ejecta</td>

 v ~ 0.25c
 v ~ 0.05-0.1c

 M ~ 0.02 Msun
 M ~> 0.01 Msun

Tension between observations and theory? Blue kilonova: too fast as post-merger ejecta Red kilonova: too massive as dynamical ejecta See e.g., Metzger+18, Waxman+18

Nuclear physics

Mass estimate: how accurate??

Multi-D interplay of multiple ejecta

By Kyohei Kawaguchi

Separated blue + red components

Photons from post-merger ejecta can interact with dynamical ejecta

See also Kasen+15

Open questions (only a part)

1. Mass ejection

- Origins of red/blue components?
- Uncertainty in estimated masses?

2. Abundance pattern

- Similar to solar abundances? (Produce 1st peak? 3rd peak?)
- How to identify spectral features?

Not clear whether GW170817 produced solar ratios

- **Observational signatures** - some lanthanides
- some lighter elements

Hotokezaka+18

Possible element features In the spectra?? => Not very conclusive (lack of atomic data!)

Model

Chornock+17

Kasen+17

Atomic calculations

Calculations of energy levels (Nd II, Z = 60)

Er (Z=68) Energy levels

NIST Atomic Spectra Database Levels Form

Best viewed with the latest versions of Web browsers and JavaScript enabled

This form provides access to NIST critically evaluated data on atomic energy levels.

Spectrum:	e.g., Fe I or Mg Li-like or Z=59 II
Default Values	Retrieve Data

Need experimental data

Good data for strong transitions

MT & Hotokezaka 13

Not complete for "opacity" but probably enough for line identification (similar to stellar abundance analysis)

Summary

• GW170817/AT2017gfo

- Signature of kilonova
- Both red and blue components
 => Production of lanthanide and higher elements
- Production rate fulfills the necessary condition

Open issues

- Origins of blue/red components
 - Uncertainty in the ejecta mass => nuclear physics
 - Multi-D models
- Composition in the ejecta: solar ratios?

Lack of atomic data (both calculations and experiments)
 => atomic physics