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Motivation

The legacy of high energy nuclear physics? J
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Robust constraints on the Equation of state from:
o Lattice QCD, for T' > 130 MeV and pup/T < .

N,=80100120160
4 stout crosscheck e

Constraints from IQCD:
@ The Interaction measure, thermodynamics at

mmm continuum limit
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KB T[MeV]
o Derivatives Of the pressure wrt 'LLB S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and

. o oo K. K. Szabo, Phys. Lett. B 730, 99 (2014)
Expansion into finite up.

o Calculations at imaginary p.
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Robust constraints on the Equation of state from:
o Lattice QCD, for T'> 130 MeV and up/T < .
@ Neutron stars, for T'=0 and pp < 6pp.

Constraints from neutron stars:
@ The mass-radius diagram.
@ with the TOV equation: a unique mapping
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Robust constraints on the Equation of state from:
o Lattice QCD, for T' > 130 MeV and up/T < .
@ Neutron stars, for T'=0 and pp < 6pp.
@ Nuclear matter, for T'=0 and pp < 1pg.

Constraints from nuclear matter:
@ Saturation density.
@ Binding energies, also of hyperons

@ Vacuum masses

Jan Steinheimer with contributions from V. 05/15/2018 3/13




Robust constraints on the Equation of state from:
o Lattice QCD, for T'> 130 MeV and up/T < .
@ Neutron stars, for T'= 0 and pp < 6pg.
@ Nuclear matter, for T'=0 and pp < 1pg.

@ Neutron star mergers, Part of this talk.

Constraints from neutron star mergers:

o The Gravitationally Driven Super Massive
lon Collider.

Credit: NASA/Swift/Dana Berry

@ Compression and heating at the same time.
@ How does the EoS play in here?
@ A new playground for physicists.
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Getting the most out of lattice QCD — the CEM model

Using only the Fourier coefficients b, from imaginary pp simulations as input:
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Getting the most out of lattice QCD — the CEM model

Using only the Fourier coefficients by from imaginary pp simulations as input:
@ One can write the density of QCD as a cluster expansion:

a(p/T% . k
O B = FELTry = Ty bk(T) sinh (142 )
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Getting the most out of lattice QCD — the CEM model

Using only the Fourier coefficients b, from imaginary pp simulations as input:
@ One can write the density of QCD as a cluster expansion:
7= g((,f,/gT/;)) = 2kZ1 bk (T) sinh (k‘}B)

o
@ Assuming the proper SB limit and using only the first two coefficients on can exactly predict finite x g thermodynamics
(]
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Getting the most out of lattice QCD — the CEM model
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Getting the most out of lattice QCD — the CEM model

Using only the Fourier coefficients by from imaginary pp simulations as input:
@ One can write the density of QCD as a cluster expansion:
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses

@ Without Radii no real constraints!

:
s
W Astro+Exp
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Radius (km)
F. Ozel and P. Freire, Ann. Rev. Astron. Astrophys.
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
@ Without Radii no real constraints!
@ Add constraints from PQCD.
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
@ Without Radii no real constraints!
@ Add constraints from PQCD.

@ Still missing the important region. Extension to finite temperature — New degrees of
freedom.

Temperature T [MeV]

~1
Baryon density [p,]
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Effective models
@ Quark based models: (P)NJL, (P)QM, etc.

@ Usually use lattice constraints
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Effective models
@ Quark based models: (P)NJL, (P)QM, etc.

@ Usually use lattice constraints
@ Nucleon based models: Walecka type, o-w-models, parity-doublet models

@ Usually use nuclear matter and neutron star constraints.
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Effective models
@ Quark based models: (P)NJL, (P)QM, etc.

@ Usually use lattice constraints

Nucleon based models: Walecka type, o-w-models, parity-doublet models
Usually use nuclear matter and neutron star constraints.

Combined models: Phase matching, Mott-dissociation or additional couplings.

Tend to be complex/challenging

However necessary for:

@ Low energy HIC (GSI, FAIR,
RHIC-BES, NICA, J-PARC)

@ Neutron Star Mergers!
Needs a good description of

hadronic matter + the correct
asymptotic degrees of freedom.
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Our approach: A combined Chiral Mean field Model (CMF)

Ingredients
@ Use a hadronic parity doublet approach for hadronic part.

@ Consistent with lattice QCD on effective masses!
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Our approach: A combined Chiral Mean field Model (CMF)

Ingredients

@ Use a hadronic parity doublet approach for hadronic part.
@ Consistent with lattice QCD on effective masses!

@ SU(3)s + mesons, including a scalar o,¢ and vector w,¢
interactions.

@ Scalar Interaction Potential:
V=VW+ %kofz — k1I3 — koly + kels
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Our approach: A combined Chiral Mean field Model (CMF)

Ingredients

Use a hadronic parity doublet approach for hadronic part.
Consistent with lattice QCD on effective masses!

SU(3)s + mesons, including a scalar o,¢ and vector w,¢
interactions.

Scalar Interaction Potential:
V=VW+ ékofz — k1I3 — koly + kels

Parameters fixed by vacuum and nuclear matter properties.
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Our approach: A combined Chiral Mean field Model (CMF)

Ingredients

Use a hadronic parity doublet approach for hadronic part.
Consistent with lattice QCD on effective masses!

SU(3)s + mesons, including a scalar o,¢ and vector w,¢
interactions.

Scalar Interaction Potential:
V=VW+ %kolz — k1I3 — koly + kels

Parameters fixed by vacuum and nuclear matter properties.

Quarks and gluons are included in a Polyakov Loop inspired
approach

0 U=—1a(T)®2"+b(T) In[1—60P*+4(d°+3*3)—3(2D*)?],

@ Only single quarks. Transition appears naturally through

excluded volume of hadrons.

Jan Steinheimer with contributions from V.
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Our approach: A combined Chiral Mean field Model (CMF)

Ingredients

Use a hadronic parity doublet approach for hadronic part.
Consistent with lattice QCD on effective masses!

SU(3)s + mesons, including a scalar o,¢ and vector w,¢
interactions.

Scalar Interaction Potential:
V= % = %ko[g = ]{,‘1]22 = k214 + k(;[a

Parameters fixed by vacuum and nuclear matter properties.

Quarks and gluons are included in a Polyakov Loop inspired
approach

0 U=—1a(T)®2"+b(T) In[1—60P*+4(d°+3*3)—3(2D*)?],

@ Only single quarks. Transition appears naturally through

excluded volume of hadrons.
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Chemical composition of neutron star

matter.
A smooth transition from hadrons to
quarks.
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The CMF at finite temperature

T T T T
—— SU(3) doublet q-h CMF model
6 lattice, WB ]
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The CMF at finite temperature

T T T
—— SU(3) doublet q-h CMF model
6 W lattice, WB 1
0 lattice, HotQCD
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Work by Anton Motornenko.
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@ Fit parameters of Polyakov potential and quark couplings to T (Mev)

lattice thermodynamics at g = 0.
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The CMF at finite temperature

Work by Anton Motornenko.

@ Fit parameters of Polyakov potential and quark couplings to
lattice thermodynamics at pup = 0.

@ Works well for the susceptibility ratios.

@ Transition is always a smooth crossover.
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The CMF at finite temperature

Applications

@ This approach describes well the mass radius relation.

. Quark
fracti
20 ” - IO%AS
/ 0.7
1.5F 0.6
z 05
= 04
= 1.0 .
0.3
0.5 0.2
0.1
| | . |
0.0 10 12 14 16 18 0.0
R (km)

Jan Steinheimer with contributions from V. 05/15/2018 10/13



The CMF at finite temperature

Applications

@ This approach describes well the mass radius relation.

@ All relevant degrees of freedom are included — finite 7.

@ Isentropic trajectories for compression by one dimensional shock wave.
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The CMF at finite temperature

Applications

@ Can be used in fluid dynamical simulations of:

@ Heavy ion collisions.
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The CMF at finite temperature

Applications
@ Can be used in fluid dynamical simulations of:
@ Heavy ion collisions.

@ Neutron Star mergers?
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The CMF and neutron star mergers

@ This EoS enables us to treat heavy ion collisions and NS mergers on the same footing

@ What area of the phase diagram are tested and what is the overlap?
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The CMF and neutron star mergers

Disclaimer: Not the same EoS used yet.

This EoS enables us to treat heavy ion collisions and NS mergers on the same footing
What area of the phase diagram are tested and what is the overlap?

Low beam energy HIC compared to NS merger simulations.
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The CMF and neutron star mergers

This EoS enables us to treat heavy ion collisions and NS mergers on the same footing
What area of the phase diagram are tested and what is the overlap?
Low beam energy HIC compared to NS merger simulations.

Disclaimer: Not the same EoS used yet.

A dense and cold core with a hot hadronic corona.
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M. Hanauske, JS et al., J. Phys. Conf. Ser. 878, no. 1, 012031 (2017).
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Summary

@ The time of niche models for the EoS are over. (We are talking about p(e,n) here)

@ Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

@ We have to take all constraints seriously.

@ Neutron star mergers and low energy (Eiap < 3 A GeV) probe the same region in the phase diagram.
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Summary

@ The time of niche models for the EoS are over. (We are talking about p(e,n) here)

@ Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

@ We have to take all constraints seriously.

@ Neutron star mergers and low energy (Eiap < 3 A GeV) probe the same region in the phase diagram.

@ Treat both on the same footing — Combining QCD thermodynamics, relativistic fluid dynamics and GR.
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Summary

@ The time of niche models for the EoS are over. (We are talking about p(e,n) here)

@ Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

@ We have to take all constraints seriously.
@ Neutron star mergers and low energy (Eiap < 3 A GeV) probe the same region in the phase diagram.

@ Treat both on the same footing — Combining QCD thermodynamics, relativistic fluid dynamics and GR.

Future

@ Extend the parity doublet model to include also the decuplett baryons — Better description of the chiral
condensate.

@ Can we apply statistical/machine learning methods to determine all parameters in the model(s)
consistently?

@ How to interpret these complex/combined models in terms of physics?
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