Electromagnetic signatures of r-process nucleosynthesis

Masaomi Tanaka (Tohoku University, Japan) **Electromagnetic signatures of r-process nucleosynthesis**

Kilonova: Electromagnetic signal from NS merger
 GW170817 and observations of kilonova
 Origin of the r-process elements

Mass ejection from NS merger

M. Shibata's talk

Sekiguchi+15, 16

Top view

Side view

Ejected material M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

Decays of r-process nuclei β decay (γ , β), α decay, fission => heating up the ejecta

"Kilonova" = Electromagnetic transient powered by decays of r-process nuclei

Li & Paczynski 98, Kulkarni 05, Metzger+10

"Kilonova"

*as

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... High opacity: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

Timescale

$$t_{\text{peak}} = \left(\frac{3\kappa M_{\text{ej}}}{4\pi cv}\right)^{1/2}$$

$$\simeq 8.4 \text{ days } \left(\frac{M_{\text{ej}}}{0.01M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1c}\right)^{-1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{1/2}$$

$$Luminosity$$

$$t_{\text{peak}} = L_{\text{dep}}(t_{\text{peak}})$$

$$\simeq 1.3 \times 10^{40} \text{ erg s}^{-1} \left(\frac{M_{\text{ej}}}{0.01M_{\odot}}\right)^{0.35} \left(\frac{v}{0.1c}\right)^{0.61} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$$

Temperature ~ 5000 K =>

bound-bound transitions of heavy elements

Radiation transfer simulations of kilonova

Light curves of kilonova

Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Model: MT+17a

If the ejecta is Lanthanide-free (Ye >~ 0.25) => low opacity => "blue kilonova"

Metzger+14, Kasen+15

Electromagnetic signatures of r-process nucleosynthesis

Kilonova: Electromagnetic signal from NS merger
 GW170817 and observations of kilonova
 Origin of the r-process elements

GW170817

The first detection of GWs from a NS merger

B. Sathyaprakash's and T. Hinderer's talks

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

Electromagnetic counterpart of GW170817 @ 40 Mpc

Day 1

Day 7

Optical (z) near IR (H) near IR (Ks)

Utsumi, MT+17

GW170817: optical/infrared light curves

-17 16 17 -16 **Observed magnitude** Absolute magnitude 18 -15 19 -14 20 -13 **ptica** 21 -12 22 -11 5 10 15 Ω Days after GW170817

Arcavi+17, Cowperthwaite+17, Diaz+17, Drout+17,Evans+17, Kasliwal+17,Pian+17, Smartt+17, Tanvir+17, Troja+17, Utsumi, MT+17, Valenti+17

> Signature of lanthanide elements Ejecta mass ~0.03 Msun (w/ ~1% of lanthanides)

GW170817: Spectra

Smooth spectra (high velocity)
Not similar to known transients

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Prese

Signature of lighter r-process elements

Electromagnetic signatures of r-process nucleosynthesis

Kilonova: Electromagnetic signal from NS merger
 GW170817 and observations of kilonova
 Origin of the r-process elements

NASA/JPL-Caltech/ESO/R. Hurt

330°

300

270°

Norma Ann

M (r-process) ~ 2 x 10⁴ Msun coottarius Arm

M (galaxy) ~ 6 x 10¹⁰ Msun

t (galaxy) ~ 10¹⁰ yr

10

90°

30°

How much r-process elements we have in our Galaxy? Scuttum Centaurus Arm

Que parseus orion

60,000 ly

45.000 lv

Fat 3Kpc Arm

Near 3kpc Arm

🔊 Sun

Orion Spur

5,000 ly

Rosswog+17, Hotokezaka+15, 18

Caveat: constant event rate over time, "closed box" galaxy, ...

What we have learned from GW170817

- Red kilonova => production of lanthanide elements
- Blue kilonova => production of lighter r-process elements
- Production rate (rate x yield) explains the total abundance

Open issues

- What is the origins of blue/red kilonova?
- Which is element abundance pattern?
 Similar to solar abundance ratios?

Dynamical ejecta (~< 10 ms)

Mej ~ 10⁻³ - 10⁻² Msun v ~ 0.1-0.2 c Low Ye (w/ wide distr.) => Red kilonova?

Post-dynamical ejecta (~< 100 ms)

Mej >~ 10⁻³ Msun v ~ 0.05 c Relatively high Ye => Blue kilonova? M. Shibata's and A. Arcones's talks

What is the origin of blue/red kilonova?

See e.g., Metzger+18, Waxman+18

Blue kilonova M ~ 0.02 Msun v ~ 0.25c Too fast as post-merger ejecta??

Red kilonova M ~ 0.03 Msun v ~ 0.1 c Too massive as dynamical ejecta??

Post-merger ejecta Inside of dynamical ejecta (less dynamical ejecta near the pole)

What is the abundance pattern that NS merger produces?

see J. Lattimer's And A. Frebel's talk

Solar abundance ratios

GW170817 - lanthanides - lighter elements

Hotokezaka+18

Not yet clear if NS mergers reproduce solar abundance ratios

GW170817: Spectra

Smooth spectra (high velocity)
Not similar to known transients

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Possible element features In the spectra?? => Not conclusive yet (lack of atomic data)

Model

Chornock+17

MT+17

Atomic calculations

Summary

• Kilonova: signature of r-process nucleosynthesis

- Detected for GW170817
- Both red and blue components
 => Production of lanthanide and higher elements
- Production rate fulfills the necessary condition (but abundance patterns are not well constrained)

• Future prospects

- Astrophysics: Consistent modeling from merger to kilonova
- Atomic physics: Improvement in heavy element data

Test with future GW + EM observations
 Event rate, yield, and abundance patterns
 (with different masses and viewing angles)