Observing the r-process in the oldest, most metal-poor stars

Part II (of sorts)

Massachusetts Institute of Technology

Anna Frebel

CHEMICAL EVOLUTION

Chemical evolution & cosmic recycling

Astronomers'																		
H: X				Periodic Table									He: Y					
3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57	58	59 Du	60	61	62	63	64	65	66	67	68	69	70 Xh		
		* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

With time, more and more <u>of</u> all elements were made!

We look for stars with the <u>least amounts</u> of elements heavier than H and He!

STELLAR ARCHAEOLOGY

Using metal-poor stars to probe the early universe

Low-mass stars with M < 1 M_o: Lifetimes > 10 billion years => they are still around!

Back-of-the-envelope calculation

Estimated H gas mass of typical star forming cloud: ~10⁵ M_{sun} Estimated Fe yield of typical supernova: ~0.1 M_{sun} Assume homogenous and instantaneous mixing of Fe in gas

=> [Fe/H] = −3.2 is abundance of next-generation star
=> [Fe/H] ≤ −3: only ~1 progenitor star produced that iron

(= 1/1000th of solar Fe)

UPDATED METAL-POOR STAR CLASSIFICATIONS

Table 1 Classes and signatures of metal-poor stars						
Description	Definition	Abbreviation				
Population III stars	Postulated first stars, formed from metal-free gas	Pop III				
Population II stars	Old (halo) stars formed from low-metallicity gas	Pop II				
Population I stars	Young (disk) metal-rich stars	Pop I				
Super-metal-rich	$[{\rm Fe}/{\rm H}] > 0.0$	MR				
Solar	$[{ m Fe}/{ m H}]=0.0$	None				
Metal-poor	$[{\rm Fe}/{\rm H}] < -1.0$	MP				
Very metal-poor	$[{\rm Fe}/{\rm H}] < -2.0$	VMP				
Extremely metal-poor	$[{\rm Fe}/{\rm H}] < -3.0$	EMP				
Ultra-metal-poor	$[{\rm Fe}/{\rm H}] < -4.0$	UMP				
Hyper-metal-poor	$[{\rm Fe}/{\rm H}] < -5.0$	HMP				
Mega-metal-poor	$[{\rm Fe}/{ m H}] < -6.0$	MMP				
Septa-metal-poor	$[{\rm Fe}/{\rm H}] < -7.0$	SMP				
Octa-metal-poor	$[{\rm Fe}/{\rm H}] < -8.0$	OMP				
Giga-metal-poor	$[{\rm Fe}/{\rm H}] < -9.0$	GMP				
Ridiculously metal-poor	$[{\rm Fe}/{\rm H}] < -10.0$	RMP				
Signature	Metal-poor stars with neutron-capture element patterns	Abbreviation				
Main r -process	$0.3 \le [Eu/Fe] \le +1.0$ and $[Ba/Eu] < 0.0$	r-I				
	[Eu/Fe] > +1.0 and $[Ba/Eu] < 0.0$	$r ext{-II}$				
Limited r -process ^a	[Eu/Fe] < 0.3, [Sr/Ba] > 0.5, and [Sr/Eu] > 0.0	$r_{ m lim}$				
s-process	[Ba/Fe] > +1.0, [Ba/Eu] > +0.5, [Ba/Pb] > -1.5	s				
r- and s -processes	$0.0 < [Ba/Eu] < +0.5 \text{ and } -1.0 < [Ba/Pb] < -0.5^{b}$	r+s				
<i>i</i> -process	No unambiguous match to neutron-capture element patterns/criteria	i				
Signature	Metal-poor stars with other element characteristics	Abbreviation				
Neutron-capture normal	$[\mathrm{Ba/Fe}] < 0$	No				
Carbon enhancement	$[C/Fe] > +0.7 \text{ for } \log(L/L_{\odot}) \le 2.3$	$CEMP^{c}$				
	$[C/Fe] \ge [+3.0 - \log(L/L_{\odot})]$ for $\log(L/L_{\odot}) > 2.3^{d}$	CEMP				
α -element enhancement	$[Mg, Si, Ca, Ti/Fe] \sim +0.4$	α -enhanced				

Frebel 2018 ARNP

^aAlso referred to as the light-element primary process (LEPP) (19) or "weak" *r*-process.

^bBased on only one known carbon-enhanced metal-poor (CEMP)-r + s star (20); may require future adjustments.

^cThe CEMP star definitions are from Reference 21. s- and i-process-enhanced stars are always CEMP stars; r-process-enhanced stars may or may not be CEMP stars. There is also a class of CEMP-no stars.

^dCarbon corrections as a function of luminosity can also be obtained from Reference 22.

OBSERVATIONAL CONSTRAINTS ON THE R-PROCESS

Constraints provided by r-process star observations

- ✓ Limited r-process stars
- Deviations from scaled solar r-process pattern for first peak elements
 - a. Some stars have higher relative abundances
 - b. Some stars have lower relative abundances

✓ Actinide element variations

- a. Actinide boost stars (relative to a 13Gyr decay age)
- b. Actinide deficient stars (relative to a 13Gyr decay age)
- \checkmark Robust main pattern for elements Ba and above

ANNA FREBEL

ZOO OF R-PROCESSES...!

Table 2Nu	ucleosynthesis processes that	can contribut	te neutr	con-capture elements
Process	Conditions	Elements	Ye	Astrophysical sites
		produced		
Terminal	Insufficiently neutron rich;	$\mathrm{Sr} \to \mathrm{Ag}$	< 0.5	Standard proto-neutron
QSE^{a}	α -, neutron-, proton-capture			star wind in core-collapse
	and reverse; expansion from			supernovae;
	hot, dense state			shock-heated/disk ejecta
νp -process	Proton rich, $\bar{\nu}_e$ rich;	$\mathrm{Sr} \to \mathrm{Ag}$	> 0.5	Standard proto-neutron
	QSE and $\bar{\nu}_e$ capture			star wind in core-collapse supernovae;
				shock-heated/disk ejecta
Limited ^b	Neutron-to-seed ratio $<< 100;$	$\mathrm{Sr} \to \mathrm{Ba}$	< 0.5	Modified proto-neutron star wind; neutron
$\begin{array}{c} \text{Limited}^{\text{b}} \\ r\text{-process} \end{array}$	Neutron-to-seed ratio $<< 100;$ QSE and	$\mathrm{Sr} ightarrow \mathrm{Ba}$ (limited	< 0.5	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/
Limited ^b r-process	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture;	$\mathrm{Sr} ightarrow \mathrm{Ba}$ (limited production)	< 0.5	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta
Limited ^b r-process	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling	$\mathrm{Sr} ightarrow \mathrm{Ba}$ (limited production) toward Ba	< 0.5	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales)
Limited ^b <i>r</i> -process Main	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling Neutron-to-seed ratio > 100;	$\mathrm{Sr} \rightarrow \mathrm{Ba}$ (limited production) toward Ba $\mathrm{Ba} \rightarrow \mathrm{U}$	< 0.5 < 0.2	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales) Neutron star merger: tidal ejecta
Limited ^b <i>r</i> -process Main <i>r</i> -process	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling Neutron-to-seed ratio > 100; QSE and neutron capture;	$Sr \rightarrow Ba$ (limited production) toward Ba $Ba \rightarrow U$	< 0.5	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales) Neutron star merger: tidal ejecta (during interaction);
Limited ^b r-process Main r-process	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling Neutron-to-seed ratio > 100; QSE and neutron capture; any fission cycling	$Sr \rightarrow Ba$ (limited production) toward Ba $Ba \rightarrow U$	< 0.5 < 0.2	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales) Neutron star merger: tidal ejecta (during interaction); dynamical ejecta (during merger)
Limited ^b <i>r</i> -process Main <i>r</i> -process Robust	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling Neutron-to-seed ratio > 100; QSE and neutron capture; any fission cycling Neutron-to-seed ratio > 100;	$Sr \rightarrow Ba$ (limited production) toward Ba $Ba \rightarrow U$ $Ba \rightarrow U$	< 0.5 < 0.2 < 0.2	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales) Neutron star merger: tidal ejecta (during interaction); dynamical ejecta (during merger) Neutron star merger: tidal ejecta
Limited ^b r-process Main r-process Robust (main)	Neutron-to-seed ratio << 100; QSE and (limited) neutron capture; no fission cycling Neutron-to-seed ratio > 100; QSE and neutron capture; any fission cycling Neutron-to-seed ratio > 100; QSE and neutron capture;	$Sr \rightarrow Ba$ (limited production) toward Ba $Ba \rightarrow U$ $Ba \rightarrow U$	< 0.5 < 0.2 < 0.2	Modified proto-neutron star wind; neutron star merger: disk (after merger, viscous/ wind timescales); shock-heated ejecta (during merger, dynamical timescales) Neutron star merger: tidal ejecta (during interaction); dynamical ejecta (during merger) Neutron star merger: tidal ejecta (during interaction);

^aQuasi-statistical equilibrium; see Reference 102 for a detailed description and treatment.

^bOften referred to as the weak r-process or the light-element primary process (LEPP). However, the term "weak" does not well describe the nature of the underlying r-process physics, and "LEPP" does not refer to a specific nuclear physics process.

Frebel 2018, ARNP

RARE R-PROCESS STARS IN THE MILKY WAY

Among 1658 metal-poor stars in JINAbase (Abohalima & Frebel 2017), 42 stars have abundances that match the limited-r definition

ANNA FREBEI

ASTROPHYSICS

NUCLEAR

=> > ~3% (strict lower limit due to observ. limitations of Eu detections!)

DEVIATIONS OF FIRST PEAK ELEMENTS

R-process dwarf galaxy Ret I has **lowest relative first** peak abundances!

=> purest r-process pattern available to us

ш

Ш

L L L L

ANNA

Lippuner&Roberts 2015

Models: Eichler+2015, Wu+ 2016, Ji & Frebel 2018

WHAT ABOUT THAT MASS RATIO MORE GENERALLY?

Halo r-process stars show some scatter of 1st peak to 2nd/3rd peak

Some physical mechanism must link amount of n-rich and n-poor ejecta!

 $M_{n-poor}/M_{n-rich} \sim 0.5 \text{ to } 2$

6 U AND 4 PB MEASUREMENTS

ROBUST R-PROCESS IN METAL-POOR HALO STARS

r-process abundance **patterns** are the same in the Sun and old metalpoor stars

r-process stars are all extremely metal-poor: [Fe/H]~-3.0 (= 1/1000th of solar Fe value)

Definition: $[Fe/H] = log_{10}(N_{Fe}/N_H)_{star} - log_{10}(N_{Fe}/N_H)_{Sun}$

ASTROPHYSICS NUCLEAR

FREBEL

ANNA

R-Process Alliance

Goal: To build up sample of galactic r-process stars to provide the astrophysical data for tackling outstanding questions about the r-process

Connect observational data set with nuclear physic theory and chemical evolution efforts

Core group: Tim Beers, Rana Ezzeddine, Anna Frebel, Terese Hansen, Vini Placco, Ian Roederer, Charli Sakari. With ~20 more associated astronomers

ANNA FREBE

OBSERVATIONAL GOALS

Uncover many (nearly all?) bright

=> **r-process stars** in the Milky Way: rl, rll stars but also r0 (low Eu but shows r-process pattern), some rlll; also CEMP-r stars

=> Limited r-process stars, i.e. stars with relative enhancement of Sr, Y, Zr compared to Eu and lanthanides

=> Others, such as **r+s stars;** occasional **s-process/ i-process star**

Published:

Placco et al. 2017: U star Sakari et al. 2018: brightest rII star Hansen et al. 2018: first data release paper Placco et al. 2018: med-resolution results Holmbeck et al. 2018: actinide boost U star

Submitted:

Gull et al. 2018: first r+s star Cain et al. 2018: three new rl/rll stars

In prep:

Sakari et al. 2018: second data release paper

...and more!

ANNA FREBEI

The first true r+s star!

An s-process star with [Fe/H] = -2.3

that formed from r-process enhanced gas!

Gull, Frebel et al. 2018

Gull, Frebel et al. 2018

RETICULUM II IS NOT THE ONLY R-PROCESS GALAXY!

Nope!

Feb 2017: newly discovered UFD Tucana III hosts at least 1 mildly r-process enriched star with [Fe/H] = -2.25!

=> 2 of 15 ultra-faint dwarfs show r-process enrichment

Hunt for more r-process galaxies is in full swing! :)

Their value to astrophysics + nuclear physics has been fully recognized by now

R-PROCESS OPERATES IN DWARF GALAXIES

Ursa Minor

Draco

Fornax

Reticulum II -3.0 < [Fe/H] < -2.1

1.0 < [Eu/Fe] < 2.1

-2.6 < [Fe/H] < -0.8

1.1 < [Eu/Fe] < 1.7

20 rl stars in 13 r ll stars in

•

•

- Tucana III
- Ursa Minor
- Draco
- Sculptor
- Fornax
- Carina
- -2.5 < [Fe/H] < -0.8 0.3 < [Eu/Fe] < 1.0

How can a variety of dwarfs have so different r-process levels? => Internal or external enrichment?

- => Different dilution masses?
- => Different accretion history
 (accreted r-process stars)?

19 Sr Z Ba Ce Nd SmGd Dy Er 18 Tucana III 17 16 15 Fornax 14 13 Carina 12 11 ω **Relative log** Draco 10 9 8 Ursa Mine 6 5 3 2 0 ω 0 \triangleleft 65 70 35 40 50 55 60 45 Atomic number

Abdu

Abohalima

Abohalima & Frebel 2018, arxiv/1711.04410

JINABASE

A NEW DATABASE OF METAL-POOR STARS

	Abdu Abohalima & Frebel 2018, arxiv/1711.04410 Abohalima JINABASE								
	ANEWDA	TABASE O	F METAL-POOR STARS						
		hore, CO	m						
JINA-CEE	Query JINAbase								
JINAbase	Choose abundances for your sample and plotting								
Home Query/Plot Search References User Page	X-axis Fe / H From To Y-axis C / Fe From To Solar abundances Asplund 2009 + Image: The top lot the log(eps) abundances leave the denominator element empty. (the first option in the list) Image: Top lot the log(eps) abundances for selected elements.								
C+ Logout	Plot abundances Show data table								
Flask	Need more abundances or stellar parameter criteria? Use this option to add a selection criteria using elemental abundances other than those selected above.								
Copyright © 2002-2017 JINA-CEE	+ Add criterion - Remove criterion -								
	Further customize your sample Use these criteria to select your sample of stars.								
	Location of stars	Stellar evolutionary phase	Specific element signatures						
	 ✓ Select/deselect all ✓ MW Halo ✓ Bulge ✓ Classical Dwarfs ✓ Ultra-faint Dwarfs 	 ✓ Select/deselect all	Select/deselect all Ordinary stars CEMP CEMP-no r-l rich rel ri rel ri rel rich						
	Select references								
	The reference list is updated after a successful query to reflect the references included in the customized sample. If you change any of the optoins above to do a new query, you need to reselect the desired references manually, otherwise the references selected in the previous query would be used. This extra step is to make sure that you manually inspect the references selected for each query.								
	Select by author and year: First author/s e.g. Frebel, Roederer Year range: From e.g. 1990 To e.g.2017								

THE PUZZLE PIECES FOR EXPLORING THE R-PROCESS

Stellar Archaeology

Stellar element abundance patterns tell about previous enrichment events Nuclear Astrophysics

Astrophysical origin(s) of the chemical elements

Dwarf Galaxy Archaeology

Clean nucleosynthesis signatures in known environments