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Outline of this talk

* Gravitational waves GWs: a new tool for exploring the universe

* Theoretical models needed to extract the unique information they encode

* Main focus of this talk: imprints of NS matter during the inspiral

* Qutlook
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Preliminary: black holes and neutron stars

® Black hole (BH)

» Consist only of extreme
spacetime curvature

» Characterized entirely by
mass & spin

Neutron star (NS)

> extreme matter

Crushed

>




GWV signals from black-hole binary systems

Binary inspiral

~75 orbits / sec

» Details of the waveform encode fundamental source properties

equal masses mass ratio 10:1 spins misaligned to orbital

angular momentum



Interpreting GVV signals via matched filtering

here: only total mass of the binary and distance vary
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Very sensitive to the phasing



Challenges for computing templates

* must solve for the dynamical spacetime of the binary system.

field equations:

Newtonian Gravitational potential ~ Mass density
gravity
V2® = 47Gp
General dynamical spacetime
sources
Relativity geometry
87

Guv|gap] = A Ty
! t

highly nonlinear

differential operator flow of energy

& momentum, ...

~—_—————
6 coupled egs. in 6 variables

equations of motion:

density, pressure,

0P
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VG [gap] =0
!

complicated
differential egs.



Approaches to computing templates

Newtonian dynamics "\ wj
orbital L Y\_/.

separation

post-Newtonian theory

| test
! path to merger black hole _
| : particle
perturbation -
limit

theory

mass ratio



Complete waveform model for comparable-mass binaries

Newtonian dynamics "N wj
orbital T L K/‘

7 )

Effective one body (EOB) approach

Binary problem Effective description
o S effective particle
. MAP
My u (reduced mass)

<_/m2

[Buonanno, Damour

1999, 2000]
effective spacetime

total mass M, mass ratio u/M

mass ratio




Complete waveform model for comparable-mass binaries

Newtonian dynamics "N jj
orbital T ®

o N N

Phenomenological approach heory
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e test
[ Ajith+ 08, black hole |
. particle
Hannam+ 14, perturbation imit

Efficient frequency-domain waveforms
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Imprints of objects’ internal structure on GWs

—— black holes (aligned spins)

What changes for other objects!?



Imprints of objects’ internal structure on GVVs

—— black holes —— other objects
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regime

o echoes,

Q ringdown,

- tidal disruption,
~ point-masses, postmerger,
same signals

[outside sensitive
[~103 cycles for few-Msun band for few-Msun
objects in LIGO] objects in LIGO]



Imprints of objects’ internal structure on GVVs

—— black holes —— other objects

\/\/\/\/\/\/\ l\IVWWV\/ —

hoes
— rff €C ’
<t &> <&> % ,,n\aﬁ ringdown,

Q‘N
(_/0 — ~— G tidal disruption
L 4
=~ point-masses, rotatlon.al absence of postmerger,
deformations horizon

same signals

tidal effects

(absorption)

[outside sensitive
[~103 cycles for few-Msun + tidal excitation of internal band for few-Msun

objects in LIGO] oscillation modes objects in LIGO]



Rotational quadrupole effect

S

* Spin-induced deformation:
[Poisson 1997, Larakkers

+1997, Mora,+2006]

-
m
QSpin — _/{XQmS
AN S
matter-dependent dimensionless spin parameter X = —
=1 for a black hole <1 for black holes "
= |5 for neutron stars < 0.4 for millisecond pulsars

» Effects important for ¥ = 0.1 (depending on parameters, LIGO)

|. Harry & TH arXiv:1801.09972



Basic framework for describing tidal effects

» In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups

sociological: Kennefick 2000 " "Star crushing: theoretical practice & the theoretician’s regress’]

» Rigorous analysis: [Flanagan 1998]

@



Basic framework for describing tidal effects

» In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups

sociological: Kennefick 2000 " "Star crushing: theoretical practice & the theoretician’s regress’]

» Rigorous analysis: [Flanagan 1998]
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Basic framework for describing tidal effects

» In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups

sociological: Kennefick 2000 " "Star crushing: theoretical practice & the theoretician’s regress’]

» Rigorous analysis: [Flanagan [998]
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Basic framework for describing tidal effects

» In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups

sociological: Kennefick 2000 " "Star crushing: theoretical practice & the theoretician’s regress’]

» Rigorous analysis: [Flanagan [998]
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) Matched asymptotic expansions (for D>>R, no initial spins)

* There are NO GR non-tidal interactions (but new kinds of tides)
* derive the effects on the bodies and on the dynamics

* Then compute the GWVs and back-reaction on the binary
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Tidal effects for neutron stars

* dominant effect: - tidal field (companion)

deformation Qns = A Eiidal

/
Q Q tidal deformability TH 2008, E. Flanagan & TH, 2008
=0 for a black hole

[computed from Einstein’s equations]

A= ZkyR°
: T 2 —_—
1 ®
dimensionless Love ‘E’
number

Straightforward extension to higher multipoles Damour, Nagar 2009, Binnington, Poisson 2009



Computation of the tidal deformability for NSs

> equilibrium NS structure + ODE for y (~ deformed NS’s gravitational potential):

d
0= —" 47+ A()y + B(r)
T \ /

involve mass, pressure, density

» boundary condition: Y (r=0)=2
> evaluate Y=Y (R)
2 5
° substitute into A = gkz(Y, C)R C=

t

explicit algebraic expression

* Dimensionless deformability: A = —

myg

log (pressure - density)

Credit: B. Lackey
14



Influence on the GWs

» Energy goes into deforming the NS ()
<
@ .,
» moving tidal bulges contribute to gravitational radiation *—
Qns = A Etidal
1 (Mﬂ)10/3 _
» Imprint in GW phasing: | Adaiw ~ A IVE M =ma +mo

AVAYAVAVAVAVAVAVAVATAY

» for NS-NS: most sensitive to the weighted average:

Al ey g

[Flanagan & TH, 2008,
Vines, Flanagan & TH 2011]



Measurement of the tidal deformability GW 170817
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Accumulation of information about source properties

Where in frequency does information about different

source parameters come from (for LIGO)?
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|. Harry & TH arXiv:1801.09972
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Dynamical f-mode tides

» Qns corresponds (mainly) to the NS’s fundamental oscillation modes

Y
o/%o » f-mode frequency: wy ~ Vmns/R3  (internal structure - dependent)

» tidal forcing frequency: ~ 20 ~ 21/M /73

@

NS’s tidal response during the inspiral R
015 | | | | | ]
Qns L | ; (202)? i
i n. tides ~ T
0.10 - ] [ TH+, ,
L ] Steinhoff, TH + 2016]
= e e e === ]\
0.05 - | | | | .
770 925 1080 1230 1385 T
Jow (Hz) end of inspiral

Enhancement of tidal effects also seen in affine approach [Ferrari+2011,12]

& in numerical-relativity-based models [Dietrich+2017, Kawaguchi+20 | 8]



Including tidal effects in waveform models

* Need baseline point-mass models that include relativistic effects

* Effective one body model (EOB):

MAP » Adiabatic tides [Damour, Nagar, Bini, Faye,
ﬁ Bernuzzi+2009-2014]
% * Dynamical [TH+2016,

f-mode tides Steinhoff+2017]

* Phenomenological models:

* post-Newtonian tides [Vines+201 1, Damour+2012]

* fits to numerical-relativity results [Dietrich+2017, Kawaguchi+2017]



R(T hz;z/;’\f)

NS-NS binary inspiral

V-2 (Numerical relativity \
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inspiral

~ contact

merger=peak in GW ambplitude

Numerical relativity simulations by
I. Dietrich
Similar results for simulations by
K. Hotokezaka and F. Foucart

o black holes

.— adiabatic tides

1 «— dynamic tides

Numerical relativity error

[Dietrich & TH, 2017]



What happened post-inspiral?

NR data:T. Dietrich

Binary neutron star signal (Nikhef)

Plausible scenario:

collapse

merger postmerger to0 BH

Couldn’t tell anything about their fate from GWs ......

.... but spectacular electromagnetic counterparts at all wavelengths

20



Remaining challenges

complete model » test, refine models

late inspiral

» robust parameter space coverage
0 » more realistic physics

» accurate numerical-relativity

simulations are key

spins: new phenomena, possible enhancement of small effects

Prospects for probing more details of NS interiors _

* shifts of NS mode resonances (f-,g-,--modes most interesting for inspirals) [Ho & Lai 2000]
°* new tidal interactions and parameters [Pani+ 2016, Landry 2017]

° gravitomagnetic effects [Poisson, Landry, Vines]

21



Anticipated next discovery: neutron star + black hole

[simulation by F. Foucart, SXS collaboration]

i\ 2

tidal disruption

6N (§

GWY ‘shutoff’ can be
in LIGO band

EM counterpart

black holes ° for large mass ratios, low
” / spin, soft EoS:

A

M

> Challenges for NS-BH models:
° mass ratios 1-20+
* high BH spin, NS spin
* Spin precession [Kawaguchi+2017]

* NS matter

22



Summary & outlook

> Abundant scientific opportunities with GWs,
tremendously more with complementary multimessenger information \ q’

* Accurate models essential to realize full GWV science potential & gain deeper understanding

® Much recent progress but further advances needed

> GW source modeling

° Link to EM counterparts Q Q
* Combined data analysis strategy & tools

> Connection with developments in nuclear physics / pulsars ((
AN

* Expect a wealth of new insights in the coming years

Credit: T.Dietrich
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