# Matter effects in the gravitational waves from inspiraling neutron star binaries



Tanja Hinderer

Excellence Fellow Radboud University Nijmegen



EMMI workshop - symposium, GSI Darmstadt

June 8, 2018

# Outline of this talk

- Gravitational waves GWs: a new tool for exploring the universe
- Theoretical models needed to extract the unique information they encode
- Main focus of this talk: imprints of NS matter during the inspiral
- Outlook









# Preliminary: black holes and neutron stars



# GW signals from black-hole binary systems

**Binary** inspiral



# Interpreting GW signals via matched filtering

#### here: only total mass of the binary and distance vary



#### Very sensitive to the phasing

# Challenges for computing templates

• must solve for the dynamical spacetime of the binary system.



6 coupled eqs. in 6 variables

# Approaches to computing templates



mass ratio

# Complete waveform model for comparable-mass binaries



# Complete waveform model for comparable-mass binaries



mass ratio

# Imprints of objects' internal structure on GWs

black holes (aligned spins)

What changes for other objects?

# Imprints of objects' internal structure on GWs



# Imprints of objects' internal structure on GWs



# Rotational quadrupole effect



• Effects important for  $\chi \gtrsim 0.1$  (depending on parameters, LIGO)

I. Harry & TH arXiv:1801.09972

In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups sociological: Kennefick 2000 ``Star crushing: theoretical practice & the theoretician's regress'']

Rigorous analysis: [Flanagan 1998]



In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups sociological: Kennefick 2000 ``Star crushing: theoretical practice & the theoretician's regress'']

Rigorous analysis: [Flanagan 1998]



#### Interaction zone

#### In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups sociological: Kennefick 2000 ``Star crushing: theoretical practice & the theoretician's regress'']

Rigorous analysis: [Flanagan 1998]



In GR, are there new (non-tidal) interactions that impact the inspiral?

[numerical studies by Wilson+ 1995, several follow-ups sociological: Kennefick 2000 ``Star crushing: theoretical practice & the theoretician's regress'']

Rigorous analysis: [Flanagan 1998]

Matched asymptotic expansions (for D>>R, no initial spins)

- There are NO GR non-tidal interactions (but new kinds of tides)
- derive the effects on the bodies and on the dynamics
- Then compute the GWs and back-reaction on the binary



Straightforward extension to higher multipoles Damour, Nagar 2009, Binnington, Poisson 2009

# Computation of the tidal deformability for NSs

• equilibrium NS structure + ODE for y (~ deformed NS's gravitational potential):

$$0 = \frac{d\boldsymbol{y}}{dr} + \boldsymbol{y}^2 + A(r)\boldsymbol{y} + B(r)$$

involve mass, pressure, density

- boundary condition: y(r=0) =2
- evaluate Y=y(R)

• substitute into 
$$\lambda = \frac{2}{3} \frac{k_2(Y,C) R^5}{\uparrow}$$
  $C = \frac{m_{\rm NS}}{R}$ 

explicit algebraic expression

• Dimensionless deformability:  $\Lambda = rac{\lambda}{m_{
m NS}^5}$ 





Credit: B. Lackey

- Energy goes into deforming the NS
- moving tidal bulges contribute to gravitational radiation



Imprint in GW phasing:

$$\Delta \phi_{
m GW}^{
m tidal} \sim \lambda rac{(M\Omega)^{10/3}}{M^5}$$

 $M = m_1 + m_2$ 

for NS-NS: most sensitive to the weighted average:

$$ilde{\Lambda} = rac{1}{26} \left[ \left( 1 + 12 rac{m_2}{m_1} 
ight) oldsymbol{\lambda_1} + \left( 1 + 12 rac{m_1}{m_2} 
ight) oldsymbol{\lambda_2} 
ight]$$



[Flanagan & TH, 2008, Vines, Flanagan & TH 2011]

### Measurement of the tidal deformability GW170817



LVC 2018

# Accumulation of information about source properties



# Dynamical f-mode tides



Enhancement of tidal effects also seen in affine approach [Ferrari+2011,12] & in numerical-relativity-based models [Dietrich+2017, Kawaguchi+2018]

# Including tidal effects in waveform models

- Need baseline point-mass models that include relativistic effects
- Effective one body model (EOB):



- Phenomenological models:
  - post-Newtonian tides [Vines+2011, Damour+2012]
  - fits to numerical-relativity results [Dietrich+2017, Kawaguchi+2017]

# NS-NS binary inspiral



# What happened post-inspiral?



Couldn't tell anything about their fate from GWs .....

.... but spectacular electromagnetic counterparts at all wavelengths

# Remaining challenges



spins: new phenomena, possible enhancement of small effects
Prospects for probing more details of NS interiors
shifts of NS mode resonances (f-,g-,r-modes most interesting for inspirals) [Ho & Lai 2000]
new tidal interactions and parameters [Pani+ 2016, Landry 2017]

• gravitomagnetic effects [Poisson, Landry, Vines]

# Anticipated next discovery: neutron star + black hole



NS matter

# Summary & outlook

- Abundant scientific opportunities with GWs, tremendously more with complementary multimessenger information
- Accurate models essential to realize full GW science potential & gain deeper understanding
- Much recent progress but further advances needed
  - GW source modeling
  - Link to EM counterparts
  - Combined data analysis strategy & tools
  - Connection with developments in nuclear physics / pulsars
- Expect a wealth of new insights in the coming years











