Mass ejection from neutron-star mergers in numerical relativity

Masaru Shibata

¹ Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U.

² Max Planck Institute for Gravitational Physics at Potsdam

VUKAWA INSTITUTE FOR THEORETICAL PHYSICS

Outline

- I. Brief introduction
- II. Scenarios for NS mergers (NS-NS & BH-NS)
- III. Dynamical mass ejection
- IV. MHD/viscous ejection from merger remnants
- V. Summary

I Introduction: Why mass ejection from NS binaries is important ?

- Electromagnetic counterparts of NS merger: Key for confirming gravitational-wave detection (talks by Tanaka, Metzger, and others this week)
- 2. Possible site of r-process nucleosynthesis (talk by Lattimer)

Gold seen in neutron star collision debris

Material ejected in gamma-ray bursts may be source of heavy elements BY ERN WAYNAM 3:20PM, ULV 22, 2013

In this talk, I focus on

- Ejecta mass M_{eject}
- Electron fraction *Y*_e (=[p]/[nucleon])

II A Typical scenarios for NS-NS merger

- Constraints from radio-telescope observations:
- Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013)
 → Constraint to equation of state (EOS) for NS
- 2. Typical total mass of compact binary neutron stars $\rightarrow \sim 2.73 \pm 0.15$ solar mass (by Pulsar timing obs.)

Compact NS-NS system in our galaxy

		Orbital period	Eccentric	ity	Each	mass	lifetime
	PSR	P(day)	e	$M(M_{\rm sur})$) M_1	M_2	$T_{\rm GW}$
1.	B1913+16	0.323	0.617	2.828	1.441	1.387	3.0
2.	B1534+12	0.421	0.274	2.678	1.333	1.345	27
3.	B2127+11C	0.335	0.681	2.71	1.35	1.36	2.2
4.	J0737-3039	0.102	0.088	2.58	1.34	1.25	0.86
5.	J1756-2251	0.32	0.18	2.57	1.34	1.23	17
6.	J1906+746	0.166	0.085	2.61	1.29	1.32	3.1
7.	J1913+1102	0.206	0.090	2.875	1.65	1.24	~5
8.	J1757-1854	0.184	0.606	2.74	1.35	1.39	~0.75
							$\times 10^8$ yrs

➤ Total Mass of NS in compact NS-NS is likely to be in a narrow range, $m \approx 2.73 \pm 0.15 M_{sun}$

II A Typical scenarios for NS-NS merger

- Constraints from radio-telescope observations:
- Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013)
 → equation of state (EOS) for NS has to be stiff
- 2. Typical total mass of compact binary neutron stars $\rightarrow \sim 2.73 \pm 0.15$ solar mass (by Pulsar timing obs.)
- Numerical relativity simulations have shown that merger results typically in high-mass neutron stars (not BH) (Shibata et al. 2005, 2006... recently many works....)

Mass ejection history for MNS formation

Time after merger 10 100 1000 ms Dynamical ejection (Sec. III) (determined by dynamical timescale of NS)

> MHD/viscous ejection (Sec. IV) (by viscous timescale of remnant MNS/torus)

Neutrino irradiation (for neutrino emission timescale) (minor effects in mass but major effect in Y_e)

II B Scenarios for BH-NS merger

- Almost no observational constraints
 → Wide parameter space has to be explored
- Fate = two possibilities:
- 1. Tidal disruption of NS
- 2. Simple plunge of NS into BH (no disruption)

Condition for tidal disruption

1

. .

(----)

- For tidal disruption
- ***** Large NS Radius or
- **Small BH mass** or
- ***** High corotation spin is necessary

For tidal disruption of plausible BH-NS with $M_{\rm NS}$ =1.35 $M_{\rm sun}$, $R_{\rm NS}$ ~ 12 km, & $M_{\rm BH}$ > 5 $M_{\rm sun}$ High BH spin is necessary > ~0.5

Foucart et al. ('13,14,...); Kyutoku et al. ('15)

$$\begin{split} 1 \leq 0.1 \left(\frac{6M_{\rm BH}}{r_{\rm ISCO}}\right)^3 \left(\frac{7M_{\rm NS}}{M_{\rm BH}}\right)^2 \left(\frac{R_{\rm NS}}{6M_{\rm NS}}\right)^3 \left(\frac{\alpha}{1.7}\right)^3 \\ \left(M_{\rm BH} \leq r_{\rm ISCO} \leq 9M_{\rm BH}\right) \end{split}$$

Mass ejection history for BH-NS (in the case of tidal disruption of NS) & NS-NS \rightarrow prompt collapse to BH Time after merger 10 100 1000 msDynamical ejection (Sec. III) (determined by dynamical timescale of system) Long-term MHD/viscous ejection (Sec. IV) (by viscous timescale of disk/torus) (Fernandez-Metzger '13, '14, Just+ '15...)

> Neutrino irradiation (would be minor)

III Dynamical mass ejection

- First, for NS-NS
- Then, for BH-NS

Summary for dynamical ejecta mass in NR

Ejecta mass depends significantly on NS EOS & mass

	Nearly equal	Unequal mass:	Small total
	mass	$m_1/m_2 < 0.9$	mass system
	(M _{tot} ~ 2.7M _{sun})	$(M_{tot} \sim 2.7M_{sun})$	(< 2.6M _{sun})
Soft EOS (<i>R</i> =11-12 km)	$\frac{\text{HMNS} \rightarrow \text{BH}}{M_{\text{eje}} \sim 10^{-2} M_{\text{sun}}}$	$\frac{\text{HMNS} \rightarrow \text{BH}}{M_{\text{eje}} \sim 10^{-2} M_{\text{sun}}}$	MNS (long lived) $M_{\rm eje} \sim 10^{-3} M_{\rm sun}$
Stiff EOS	MNS (long lived)	MNS (long lived)	MNS (long lived)
(<i>R</i> =13-15km)	$M_{\rm eje} \sim 10^{-3} M_{\rm sun}$	$M_{\rm eje} \sim 10^{-2.5} M_{\rm sun}$	$M_{\rm eje} \sim 10^{-3} M_{\rm sun}$
		-	e.g. Foucart et al. '16

>Typical average velocity: 0.15-0.25 c

See also the talk slide by Bauswein on June 5th

Electron fraction profile: Broad

- Average depends on EOS but typically peak at 0.2–0.3
 Broad distribution irrespective of EOS
- Similar results by Radice+16, Lehner+15,16

Neutrino-radiation hydrodynamics simulation SFHo (*R*~11.9 km): 1.25-1.55 M_{sun} 0.002 [ms] 1000 More neutron-rich except for disk surrounding BH Luminosity [10 2 500 10 20 30 40 50 Time [ms] Electron fraction 0.15 0.2 0.25 0.3 0.5 0.35 0.4 0.45 0.10 .. -500 -500 0 500 1000 -1000 -500 0 500 1000

Green = neutron rich

Shibata et al. (2017)

Electron fraction distribution: Broad irrespective of EOS and mass → Good for producing a variety of r-elements

Neutrino irradiation from MNS increases
➤ the ejecta mass increases by ~ 0.001 solar mass
➤ Average value of Y_e increases by ~ 0.03 in 30 ms

See also, Perego et al. 2014; Goriely et al. 2015; Martin et al. 2015; Foucart et al. 2016

Note on massive NS-NS merger → Direct BH formation

May be the fate for PSR J1913+1102 of total mass 2.875 M_{sun}

- For this case, mass ejection is possible only at a merger phase of short timescale
- Nearly equal-mass: negligible mass ejection < 0.001 solar mass (e.g., Shibata + '06, Hotokezaka et al '13)
- Asymmetric case: Mass increases with the degree of asymmetry; could be ~ 0.01 solar mass for $q \sim 0.75$
- Y_{e} would be always low (almost no heating & no neutrino irradiation)

See also talk slide by Bauswein on June 5th

Note on ejecta velocity: presence of high *v* HB-135-135

BH-NS merger (SFHo EOS: density) $M_{\rm BH}$ =5.4M_{sun}, $M_{\rm NS}$ =1.35M_{sun}, $a_{\rm BH}$ =0.75

Kyutoku et al. 2018; Also many pioneer works by F. Foucart et al.

Kyutoku et al. 2018; Also many works by F. Foucart et al.

Electron fraction of ejecta

electron fraction

- Quite low electron fraction irrespective of EOS (Foucart, Duez et al., '13— '18, Kyutoku '18)
- Tiny neutrino irradiation, weak shock heating
- Likely to primarily synthesize heavy r-elements

Dynamical ejecta properties in NR

Mass:

- <u>NS-NS</u>: ~10⁻³—10⁻² *M*_{sun} depending on total mass, mass ratio & EOS (Hotoke+ 13, Bauswein+ 13, Sekiguchi+ 15,16, Radice+ 16, Lehner+ 15,16.....many others)
- <u>BH-NS</u>: 0—0.1 M_{sun} : High BH spin & EOS are the key (Foucart+ '13-15, Kyutoku+15): $M_{eject} \sim 0.2 M_{disk}$

Electron fraction

- <u>NS-NS</u>: Broad distribution of Y_e with average $\langle Y_e \rangle \sim$ 0.2—0.3: For asymmetric case, $\langle Y_e \rangle$ could be $\langle 0.2$; for prompt BH formation case, Y_e would be $\langle -0.1$
- <u>BH-NS</u>: Peak at $Y_{e} < 0.1$ (Foucart+ '13-18, Kyutoku+ '18)
- **Typical velocity**: 0.15—0.25 c; max could be ~ 0.8 c

IV Viscous/MHD ejecta for post merger

- MHD/viscous effects are likely to play a major role for post merger ejecta, i.e., **central remnant + disk** (Fernandez & Metzger+ '13-'15, Just et al. '15, Siegel-Metzger '17)
- Many Studies have been done for BH-disk systems (Fernandez & Metzger+, '13-15, Just+ '15, Siegel-Metzger '17; Natural model for BH-NS or high-mass asymmetric NS-NS)
- 10-30% of mass of disk surrounding a spinning BH is likely to be ejected by viscous ejection → dynamical ejecta mass and viscous ejecta mass are comparable
- Due to the absence of strong neutrino sources, $low Y_e$ matter would be ejected for BH + disk

Basic Picture for BH-disk system

(Fernandez-Metzger '13, Metzger-Fernandez '14, Just ea '15,)

→ Viscous ejection of mass 10-30% of torus mass

Significant difference for NS-NS remnant (Metzger-Fernandez '14, Fujibayashi et al. '18)

Viscous ejection of mass ~50% or more of torus mass *Y*_e is enhanced by neutrino irradiation from MNS
→ high *Y*_e (weak r-process)

Viscous neutrino-radiation hydrodynamics for post-merger remnant: MNS + torus

(S. Fujibayashi et al., ApJ. 2018)

- Employ covariant & causal GR viscous hydrodynamics (following Israel & Steward '79)
- Initial condition: Remnant of NS-NS merger simulation with mass $1.35-1.35M_{sun}$
- EOS: DD2 ($R_{NS} = 13.2 \text{ km}$) \rightarrow long-lived MNS is formed
- Axial symmetry is assumed (to evolve for > seconds)
- Alpha viscosity: $v = \alpha_v c_s H$ with $\alpha_v = O(0.01)$ and H = 10 km

Viscous timescale of MNS
$$\sim 10 \left(\frac{\alpha_v}{0.02}\right)^{-1}$$
 ms
Viscous timescale of disk $\sim 300 \left(\frac{\alpha_v}{0.02}\right)^{-1}$ ms

Viscous-rad hydrodynamics in GR for postmerger MNS (S. Fujibayashi et al. ApJ 2018) Rest-mass density $\alpha_{\nu}=0.04$

 $M \sim 0.05$ solar mass, $v \sim 0.05 c$

Wide 4500×4500 km FOCUS ON THIS 300×300 km

Evolution of angular velocity

Viscous-rad hydrodynamics for post-merger MNS (S. Fujibayashi et al., ApJ 2018) Electron fraction: Y_e , $\alpha_v = 0.04$

 $M \sim 0.05$ solar mass, $v \sim 0.05 c$, $Y_e \sim 0.3$ —0.4, predominantly toward equatorial plane

Wide 4500×4500 km

300×300 km

Electron fraction distribution for viscous ejecta

Neutrino irradiation from remnant neutron star

	Dynamical ejection	Post-merger ejection
1. Low-mass NS-NS	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_e \sim 0.3 - 0.5 \end{array} $
2. NS-NS→HMNS (e.g., GW170817)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{l} M > \sim 10^{-2} M_{sun} \\ Y_{e} \sim 0.2? - 0.5 \end{array} $
3. NS-NS \rightarrow BH (assume not very asymmetric)	$ \begin{array}{l} M < \sim 10^{-3} M_{sun} \\ Y_e < \sim 0.1 \end{array} $	$M < 10^{-3} M_{sun} Y_e <~ 0.1$
4. BH-NS with tidal disruption and/or asymmetric NS-NS	$ \begin{array}{l} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_e < 0.1 \end{array} $	$ \begin{array}{l} M \sim 10^{-2} M_{sun} \\ Y_{e} \sim 0.1 - 0.25 \end{array} $

	Dynamical ejection	Post-merger ejection
1. Low-mass NS-NS	$M \sim 10^{-3} M_{sun}$ $Y_e \sim 0.05 - 0.5$ Faint Red	$ \begin{array}{l} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_{e} \sim 0.3 - 0.5 \\ \text{Blue, very luminous} \end{array} $
2. NS-NS→HMNS (e.g., GW170817)	$M \sim 10^{-3} - 10^{-2} M_{sun}$ $Y_e \sim 0.05 - 0.5$	$ \begin{array}{l} M > \sim 10^{-2} M_{sun} \\ Y_{e} \sim 0.2? - 0.5 \end{array} $
3. NS-NS \rightarrow BH (assume not very asymmetric)	$M < \sim 10^{-3} M_{sun}$ $Y_e < \sim 0.1$	$M < 10^{-3} M_{sun}$ $Y_e <~ 0.1$
4. BH-NS with tidal disruption and/or asymmetric NS-NS	$M \sim 10^{-2} - 10^{-1} M_{sun}$ Y _e <~0.1	$ \begin{array}{c} M \sim 10^{-2} M_{sun} \\ Y_{e} \sim 0.1 - 0.25 \end{array} $

	Dynamical ejection	Post-merger ejection
1. Low-mass NS-NS	$ \begin{array}{c} M \sim 10^{-3} \ M_{sun} \\ Y_{e} \sim 0.05 - 0.5 \\ \hline \text{Faint Red} \end{array} $	$ \begin{array}{l} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_{e} \sim 0.3 - 0.5 \\ \text{Blue, very luminous} \end{array} $
2. NS-NS→HMNS (e.g., GW170817)	$ \begin{array}{c} M \sim 10^{-3} - 10^{-2} M_{sun} \\ Y_e \sim 0.05 - 0.5 \\ \text{Late Red, luminous} \end{array} $	$ \begin{array}{l} M > \sim 10^{-2} \ M_{sun} \\ Y_e \sim 0.2? - 0.5 \\ \hline \text{Early Blue, luminous} \end{array} $
3. NS-NS \rightarrow BH (assume not very asymmetric)	$M < \sim 10^{-3} M_{sun} Y_e < \sim 0.1$	$M < 10^{-3} M_{sun} Y_e <~ 0.1$
4. BH-NS with tidal disruption and/or asymmetric NS-NS	$M \sim 10^{-2} - 10^{-1} M_{sun}$ Y _e <~0.1	$M \sim 10^{-2} M_{sun} Y_e \sim 0.1 - 0.25$

	Dynamical ejection	Post-merger ejection
1. Low-mass NS-NS	$ \begin{array}{c} M \sim 10^{-3} \ M_{sun} \\ Y_{e} \sim 0.05 - 0.5 \\ \hline \text{Faint Red} \end{array} $	$ \begin{array}{l} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_e \sim 0.3 - 0.5 \\ \text{Blue, very luminous} \end{array} $
2. NS-NS→HMNS (e.g., GW170817)	$ \begin{array}{c} M \sim 10^{-3} - 10^{-2} M_{sun} \\ Y_e \sim 0.05 - 0.5 \\ \text{Late Red, luminous} \end{array} $	$ \begin{array}{l} M > \sim 10^{-2} \ M_{sun} \\ Y_e \sim 0.2? - 0.5 \\ \hline \text{Early Blue, luminous} \end{array} $
3. NS-NS \rightarrow BH (assume not very asymmetric)	$M < \sim 10^{-3} M_{sun}$ Y _e < ~ 0.1 Faint Red	$M < 10^{-3} M_{sun}$ Y _e <~ 0.1 Faint Red
4. BH-NS with tidal disruption and/or asymmetric NS-NS	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

	Dynamical ejection	Post-merger ejection
1. Low-mass NS-NS	$M \sim 10^{-3} M_{sun}$ Y _e ~ 0.05—0.5 Faint Red	$ \begin{array}{l} M \sim 10^{-2} - 10^{-1} M_{sun} \\ Y_{e} \sim 0.3 - 0.5 \\ \hline \text{Blue, very luminous} \end{array} $
2. NS-NS→HMNS (e.g., GW170817)	$ \begin{array}{c} M \sim 10^{-3} - 10^{-2} M_{sun} \\ Y_e \sim 0.05 - 0.5 \\ \text{Late Red, luminous} \end{array} $	$ \begin{array}{l} M > \sim 10^{-2} \ M_{sun} \\ Y_e \sim 0.2? - 0.5 \\ \hline \text{Early Blue, luminous} \end{array} $
3. NS-NS → BH (assume not very asymmetric)	$M < \sim 10^{-3} M_{sun}$ Y _e < ~ 0.1 Faint Red	$M < 10^{-3} M_{sun}$ Y _e <~ 0.1 Faint Red
4. BH-NS with tidal disruption and/or asymmetric NS-NS	$M \sim 10^{-2} - 10^{-1} M_{sun}$ Y _e <~0.1 Late Red, dim/ luminous ?	$M \sim 10^{-2} M_{sun}$ Y _e ~ 0.1—0.25 Late Red

Mass-radius relation for various EOS

