

Questions

- 1. Can HIC help constrain the EOS at NS core densities?
- 2. Signatures of phase transitions in QCD matter at large baryon densities?
- 3. What are suitable observables?

EOS from NSs

"While terrestrial experiments are able to test and constrain the EOS at densities below the saturation density of nuclei $\rho_{nuc} = 2.8 \times 10^{14}$ g cm⁻³ (see e.g. [14–17] for a review), currently they cannot probe the extreme conditions in the core of NSs"

EMMI RRTF, GSI, Darmstadt

EOS determination in HIC

Elliptic flow at energies 0.25-1.5 AGeV

- heavy ion reactions rapidly evolving, transient state
- influenced by
 - nuclear matter equation of state
 - momentum dependence
 - in-medium cross sections
 - Pauli blocking
 - in-medium characteristics of particles
 - effective masses/potentials, spectral functions
 - decay widths
- microscopic transport models needed
- convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - with the same code
 - using the same physical and technical parameters.

Symmetry energy from neutron/proton flow

for details see Y. Leifels, EMMI – RRTF symposium

 $E_{sym} = E_{sym}^{pot} + E_{sym}^{kin} = 22 \text{MeV} \cdot (\rho/\rho_0)^{\gamma} + 12 \text{MeV} \cdot (\rho/\rho_0)^{2/3}$ Density dependence: $\gamma = 0.72 \pm 0.19$ Pressure contribution at $\rho = \rho_0$: $\rho_0 = 3.4 \pm 0.7 \text{ MeV/fm}^3$

EOS at center of largest NSs ?

AP4 incomplete, strangeness DoF missing.

Excitation function of collective flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Large sensitivity for high densities in the (lower) AGS/SIS100 beam energy range.

Phases of QCD matter ?

CBM – Goals

Mission:

Systematically explore QCD matter at large baryon densities with high accuracy and rare probes.

Dense Baryonic Matter

Neutron stars

Temperature T < 20 MeV

Density $\rho < 10 \rho_0$ Lifetime

Neutron star merger

Temperature T < 70 MeV

Density $\rho < 2 - 6 \rho_0$

Reaction time (GW170817) T ~ 10 ms

Heavy ion collisions at SIS100

Compressed Baryonic Matter

Temperature T < 120 MeV

Density $\rho < 8\rho_0$

Reaction time $t \sim 10^{-23} s$

Baryon densities in central Au+Au collisions

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

Reminder: Subthreshold Kaon – measurements (KAOS at SIS18)

Final state particle abundance

Particle yields from central Au + Au collisions

Strange and charmed particle production thresholds in pp - collisions

reaction	\sqrt{s} (GeV)	T _{lab} (GeV)
$pp \to K^+ \Lambda p$	2.548	1.6
$pp \rightarrow K^+ K^- pp$	2.864	2.5
$pp \to K^+ K^+ \Xi^- p$	3.247	3.7
$pp \to K^+ K^+ K^+ \Omega^- n$	4.092	7.0
$pp \rightarrow \Lambda \bar{\Lambda} pp$	4.108	7.1
$pp \rightarrow \Xi^- \overline{\Xi}^+ pp$	4.520	9.0
$pp \rightarrow \Omega^- \bar{\Omega}^+ pp$	5.222	12.7
$pp \rightarrow J/\Psi pp$	4.973	12.2

CBM – Strategy

CBM experimental setup (day-1)

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ
- R_{int} = 10 MHz (Au+Au)

$$\begin{split} R_{int} &\approx 0.5 \; MHz \\ \text{full bandwith:} \\ & \text{Det.} - \text{Entry nodes} \\ \text{reduced bandwidth} \\ & \text{Entry nodes} - \text{Comp. farm} \end{split}$$

with R_{int} (MVD)=0.1 MHz

Software based event selection

Day-1 funding: ~ 90% secured

CBM data processing system

Reaction rate Au + Au:

10⁷ collisions per second

Data rate:

~ 1 TB/s

Main features:

- radiation tolerant detectors and front-end electronics
- free streaming (triggerless) data with time stamps,
- software based event selection

N.Herrmann, June 11, 2018

EMMI RRTF, GSI, Darmstadt

CBM physics and observables

QCD equation-of-state

- collective flow of identified particles
- particle production at threshold energies

Phase transition

- excitation function of hyperons
- excitation function of LM lepton pairs

Critical point

event-by-event fluctuations of conserved quantities

Chiral symmetry restoration at large ρ_B

- in-medium modifications of hadrons
- dileptons at intermediate invariant masses

Strange matter

- (double-) lambda hypernuclei
- Search for meta-stable objects (e.g. strange dibaryons)

Heavy flavour in cold and dense matter

excitation function of charm production

volume 53 + number 3 + march + 2011

 \rightarrow V. Friese

The European Physical Journal

CBM day-1 – program

Observables: Strangeness and Dileptons

Excitation function of yields and phase-space distributions of multi-strange hyperons and lepton pairs in AA (C+C, Au+Au) collisions from 2-11 A GeV. Search for hypernuclei (no data available in this energy range).

Chemical Freeze-out data

Analyses in framework of Statistical Hadronisation Model

High energies:

grandcanonical ensemble

$$n_i(\mu,T) = \frac{N_i}{V} = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int \frac{p^2 dp}{e^{\frac{E_i - \mu_i}{T}} \pm 1}$$
$$\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_{3,i}$$

Lower energies / small systems: canonical ensemble, strangeness suppression factor γ_s

Equilibrium achieved in small systems?

Equilibrium as signature for phase transition?

Freeze-out line at large baryon densities as phase boundary to quarkyonic matter?

A. Andronic et al., Nucl. Phys. A837 (2010) 65

HADES: Sub-threshold Ξ^- - production

Ar+KCI reactions at 1.76A GeV

• Ξ^{-} yield by appr. factor 25 higher than thermal yield

G. Agakishiev et al. (HADES), PRL103, 132301, (2009)

Hyperons as probes of dense matter

PHSD interpretation of Ξ^- - production

A. Palmese et al. Phys.Rev. C94 (2016) no.4, 044912

Predicted sensitivities of production yields:

strong dependence on Chiral Symmetry Restoration (CSR)

Measurable dependence on Equation of State (NL1, NL3)

Alternative explanation (URQMD): Tuned resonance parameter J. Steinheimer, M. Bleicher, J.Phys. G43 (2016), 015104

Prediction of PHSD transport model

(E. Bratkovskaya, W. Cassing)

I. Vassiliev, CBM, private communication

CBM experimental setup (MSV)

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ

 $R_{int} = 10 \text{ MHz} (Au+Au)$

with R_{int} (MVD) = 0.1 MHz

 Software based event selection

Equation of State & Neutron stars

Soft EOS (Skyrme, K = 200 MeV) is not repulsive enough to allow for a neutron star with 2 solar masses.

DBHF BONN A corresponds to AP4, however, does not contain strange baryons.

Stiffening of EOS must occur in the range of densities up to 4 ρ_0 (SIS100 energy range).N.Herrmann, June 11, 2018EMMI RRTF, GSI, Darmstadt26

Dileptons as probes for dense matter (Day 1)

- LMR: ρ chiral symmetry restoration fireball space time extension
- IMR: access to fireball temperature ρ -a₁ chiral mixing

Measurement program:

e.g. excitation function of IMR – slope full performance, uses MVD (100 kHz)

Collision Energy (√s_{NN}) [GeV]

CBM Day 1 – further unique measurements

1.9

 $\Omega^{-} \rightarrow \Lambda K^{-}$

1.7

eff = 5.1%

S/Bg = 1.0

1.8

 ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He+p+}\pi^{-}$

4.1

m [GeV/c²]

 $m_{inv} K^{-} \Lambda (GeV/c^2)$

Hyperon measurements:

Au+Au at 10A GeV, ε_{dutv} = 50	0%, R=100kHz
---	--------------

Particle	Multi- plicity	BR	ε (%)	yield (s⁻¹)	yield in 1 week
Ω ⁻ (1672)	5.6·10 ⁻³	0.68	5	1.64	5•10⁵
⁴ ∧He (3930)	1.9·10 ⁻³	0.32	14.7	0.87	3∙10⁵

Hypernuclei measurement:

Di-Muon

LM measurement at 8A GeV

complementary measurement to e⁺e⁻ with different systematic errors

Entries / (8MeV/c²)

Entries

100

50

0 3.9

800

600

400

200

1.6

Indian contribution: Muon Detector and Physics

EMMI RRTF, GSI, Darmstaat

Reference data for Λ – production

M. Merschmeyer et al. (FOPI), PRC 76, 024906 (2007)

Reaction:

⁵⁸Ni + ⁵⁸Ni at 1.93 AGeV

Centrality: 350 mb (most central) $\frac{\sigma_{cen}}{\sigma_{geo}} \le 0.13$

Data taking period: 17.1.2003 – 3.2.2003

Statistics:

~ 60.000 reconstructed Λ

Derived quantities: slope parameter integrated yield

Physics of the benchmark observable

- smaller than proton
- not explained by transport models
- reason unclear:
 - rescattering cross section
 - repulsive potential