Heidelberg Institute for Theoretical Studies

Gravitational waves and the EoS:

Collapse behavior and postmerger gravitational wave emission of neutron star mergers

EMMI Rapid Reaction Task Force: the physics of neutron star mergers at GSI/FAIR, 05/06/2018

Andreas Bauswein

(Heidelberg Institute for Theoretical Studies)

with J. A. Clark, K. Chatziioannou, H.-T. Janka, O. Just, N.Stergioulas

Outline

Focus of this talk on EoS impact / constraints

- Simulations and ejecta masses
- Collapse behavior
- NS radius constraints from GW170817 *
- dominant postmerger GW emission
 - \rightarrow NS radius measurements
 - \rightarrow maximum mass and other EoS constraints
- ► Unified picture of postmerger dynamics and GW emission
 - \rightarrow secondary GW peaks

* See also Margalit & Metzger 2017, Shibata et al. 2017, Rezzolla et al. 2018, Radice et al. 2018, Ruiz & Shapiro, Most et al. 2018, ... for other EoS constraints in the context of GW170817

Importance of EoS

- Understand properties of high-density matter (hardly accessible by laboratory experiments – theoretically challenging)
 - \rightarrow e.g. nuclear parameter (also important for nucleosynthesis models)
 - \rightarrow phase transition to hyperonic matter? Quark matter?
- Stellar properties of NS (observationally challenging)

 \rightarrow EoS affects dynamics/phenomenology of mergers (e.g em counterparts, nucleosynthesis, GRBs), supernovae, NS cooling,

Introductory remark

 Mass-radius relation (of non-rotating NSs) and EoS are uniquely linked through Tolman-Oppenheimer-Volkoff (TOV) equations

→ NS properties (of non-rotating stars) and EoS properties are equivalent !!! (not all displayed EoS compatible with all current constraints)

Simulation results – ejecta

(EoS and binary mass dependence)

DD2 1.35-1.35 M_{sun}, representative ejecta particles (white unbound)

Simulations

Dots trace ejecta (DD2 EoS 1.35-1.35 M_{sun})

Bauswein et al. 2013

Black: bound; white: unbound (formally) Central lapse: measure for compactness

Asymmetric mergers

 \rightarrow larger tidal component, larger total ejecta masses

Bauswein et al. 2013

Ejecta mass dependence

Different EoSs characterized by radii of 1.35 M_{sun} NSs (note importannce of thermal effects)

Coarse picture: EoS dependence of ejecta mass

- Ejecta mass 0.03-0.05 Msun in GW170817
- Excludes tentatively very stiff EoSs
- Excludes tentatively very soft EoSs
 prompt collapse !!!

Reference	$m_{ m dyn}[M_\odot]$	$m_{ m w} \left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	_
Arcavi et al. (2017)	_	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Bauswein et al 2013, see also Hotokezaka et al 2013

Compilation in Cote et al 2018

Ejecta mass dependencies: binary para.

understandable by different dynamics / impact velocity / postmerger oscillations

Central lapse α traces remnant compactness / oscillations / dynamics (dashed lines)

Ejecta morphology

 Rather isotropic ejection → dynamical ejecta obsurcs secular ejecta (?) → early blue component puzzling? → strong neutrino effects such that no heavy r-process elements (high opacity material is produced)?

Bauswein et al. 2013

- Colored bands: rates for different EoSs
- Symbols: population synthesis predictions (Abadie et al. 2010)
- Vertical lines: pulsar observations (Kalogera et al. 2004)
- Dashed curve: short GRBs (Berger 2013)
- Arrow: volumetric rate (Abbott et al. 20017) converted to Galactic rate

Collapse behavior: Prompt vs. delayed (/no) BH formation

Relevant for:

EoS constraints through M_{max} measurement

Conditions for short GRBs

Mass ejection

Electromagnetic counterparts powered by thermal emission

And NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Simulations reveal M_{thres}

EoS	$M_{\rm max}$ (M_{\odot})	R _{max} (km)	C_{\max}	<i>R</i> _{1.6} (km)	$M_{\rm thres}$ (M_{\odot})
NL3 [37,38]	2.79	13.43	0.307	14.81	3.85
GS1 [<mark>39</mark>]	2.75	13.27	0.306	14.79	3.85
LS375 [40]	2.71	12.34	0.325	13.71	3.65
DD2 [38,41]	2.42	11.90	0.300	13.26	3.35
Shen [42]	2.22	13.12	0.250	14.46	3.45
TM1 [43,44]	2.21	12.57	0.260	14.36	3.45
SFHX [45]	2.13	10.76	0.292	11.98	3.05
GS2 [46]	2.09	11.78	0.262	13.31	3.25
SFHO [45]	2.06	10.32	0.294	11.76	2.95
LS220 [40]	2.04	10.62	0.284	12.43	3.05
TMA [44,47]	2.02	12.09	0.247	13.73	3.25
IUF [38,48]	1.95	11.31	0.255	12.57	3.05

Bauswein et al. 2013

Smooth particle hydrodynamics + conformal flatness

Threshold binary mass

- Empirical relation from simulations with different M_{tot} and EoS
- ► Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38\frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right)M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

► Both better than 0.06 M_{sun}

EoS constraints from GW170817

 \rightarrow lower bound on NS radii

Collapse behavior

M_{thres} EoS dependent - somehow M_{max} should play a role

A simple but robust NS radius constraint from GW170817

- High ejecta mass inferred from electromagnetic transient
 - \rightarrow provides strong support for a delayed/no collapse in GW170817
 - \rightarrow even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	_
Arcavi et al. (2017)	_	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Figure 1. NGC4993 grz color composites (1.5×1.5). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Compilation in Cote et al 2018

- Ejecta masses depend on EoS and binary masses
- Note: high mass points already to soft EoS (tentatively/qualitatively)
- Prompt collapse leads to reduced ejecta mass
- ▶ Light curve depends on ejecta mass:
 → 0.02 0.05 M_{sun} point to delayed collapse
- Note: here only dynamical ejecta

Only dynamical ejecta

Collapse behavior

(1) If GW170817 was a delayed (/no) collapse:

$$M_{\rm thres} > M_{\rm tot}^{GW170817}$$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

$$M_{\rm thres} = \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} > 2.74 \ M_{\odot} \qquad \text{(with } M_{\rm max}, R_{\rm max}, R_{\rm max} = 1.02 \ R_{\rm$$

(3) Causality: speed of sound $v_{S} \leq c \implies M_{\max} \leq \frac{1}{2.82} \frac{c^{2} R_{\max}}{G}$

Putting things together:

$$M_{\text{tot}}^{GW170817} \le \left(-3.38 \frac{G M_{\text{max}}}{c^2 R_{\text{max}}} + 2.43\right) M_{\text{max}} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\text{max}}}{G}$$

 \rightarrow Lower limit on NS radius

Bauswein et al. 2017

unknown)

$$M_{\rm thres} = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}$$

 $\overline{M_{\rm thres}} \ge 1.2 \overline{M_{\rm max}}$

Bauswein et al. 2017

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\max} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2M_{\max}$$

Causal li<u>mit</u>

• Extend a large sample of EoS with v_s =c beyond central density of 1.6 Msun NS

$$\rightarrow$$
 $v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\text{max}} \le \kappa R_{1.6}$

Causality limit

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\max} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2M_{\max}$$

NS radius constraint from GW170817

Bauswein et al. 2017

- ► R_{1.6} > 10.7 km
- Excludes very soft nuclear matter

Radius vs. tidal deformability

- Radius and tidal deformability scale tightly \rightarrow Lambda > 210
- Radice et al. 2018 followed a very similar approach claiming Lambda > 400

→ only 4 EoS considered – no complete coverage existing simulation data/parameter space

 \rightarrow no argument why the fifth EoS shouldn't lie at Lambda<400 \rightarrow full EoS dependence has to be investigated via Mthres

Discussion - robustness

- Binary masses well measured with high confidence error bar
- Clearly defined working hypothesis: delayed collapse
 - \rightarrow testable by refined emission models
 - \rightarrow as more events are observed more robust distinction
- Very conservative estimate, errors can be quantified
- Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!

Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- Low-SNR detections sufficient $!!! \rightarrow$ that's the potential for the future
 - \rightarrow we don't need louder events, but more
 - \rightarrow complimentary to existing ideas for EoS constraints

Future detections (hypothetical discussion)

- \rightarrow as more events are observed, bands converge to true M_{thres}
- \rightarrow prompt collapse constrains M_{max} from above

Bauswein et al. 2017

Future plans

Semi-analytic model: details

- Stellar equilibrium models computed with RNS code (diff. Rotation, T=0, many different microphysical EoS) => turning points => M_{stab}(J)
- ► Compared to J(M_{tot}) of merger remnants from simulations (very robust result) → practically independent from simulations

Bauswein & Stergioulas 2017

Semi-analytic model reproducing collapse behavior

×

0.32

Bauswein et al 2013: numerical determination of collapse threshold through hydrodynamical simulations

Solid line fit to numerical data Crosses stellar equilibrium models:

- prescribed (simplistic) diff. rotation
- many EoSs at T=0
- detailed angular momentum budget !
- => equilibrium models qualitatively reproduce collapse behavior
- even quantitatively good considering the adopted approximations

Future: Maximum mass

Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

► Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events – through presense/absence of postmerger GW emission or em counterpart)

=> direct inversion to get precise estimate of M_{max}

(see also current estimates e.g. by Margalit & Metzger, Rezzolla et al, Ruiz & Shapiro, Shibata et al., ...)

Postmerger GW emission* (dominant frequency of postmerger phase)

 \rightarrow determine properties of EoS/NSs

 \rightarrow postmerger GW spectrum reveals dynamics

* not detected for GW170817 – but expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Postmerger

Dominant postmerger oscillation frequency f_{peak} Very characteristic (robust feature in all models)

Gravitational waves – EoS survey

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

12

R [km]

14

16

Bauswein et al. 2012

18

Assess quality of empirical relation relation – only infinity norm meaningful $!!! \rightarrow$ as many EoS models as possible !!!

Gravitational waves – EoS survey

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement

Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

Binary mass variations

Different total binary masses (symmetric)

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Data analysis: see e.g. Clark et al. 2016 (PCA), Clark et al. 2014 (burst search), Chatziioannou et al 2017

 \rightarrow f_{peak} precisely measurable !!!

Bauswein et al. 2012, 2016

Strategy for radius measurements

- Measure binary masses from inspiral
- Construct f_{peak} R relation for this fixed binary masses and (optimally) chosen R
- Measure f_{peak} from postmerger GW signal
- Obtain radius by inverting f_{peak} R relation
- (possibly restrict to fixed mass ratios if mergers with high asymmetry are measured)

- Final error of radius measurement:
 - accuracy of f_{peak} measurement (see Clark et al. 2014, Clark et al. 2016)
 - maximum scatter in f-R relation (important to consider very large sample of EoSs)
 - systematic error in f-R relation

Data analysis

Principal Component analysis

Excluding recovered waveform from catalogue

Instrument	$\mathrm{SNR}_{\mathrm{full}}$	$D_{\rm hor} [{ m Mpc}]$	Ndet [year ⁻¹]
aLIGO	$2.99_{2.37}^{3.86}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
A+	$7.89_{6.25}^{10.16}$	$78.89_{62.52}^{101.67}$	$0.13_{0.10}^{0.20}$
LV	$14.06^{18.13}_{11.16}$	$140.56^{181.29}_{111.60}$	$0.41_{0.21}^{0.88}$
ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
CE	$41.50_{32.99}^{53.52}$	$414.62^{535.221}_{329.88}$	$10.59_{5.33}^{22.78}$

Clark et al. 2016, see also Clark et al 2014, Chatziioannou et al 2017, Bose et al. 2018

Outdated!!!

 \rightarrow possible at Ad. LIGO's design sensitivity

Secular instability

- F-modes become secular unstable (CFS)
- Linear perturbation \rightarrow saturation?
- Growth time scale may be sufficiently short to affect long-term remnant evolution

Doneva et al. 2015

Conclusions

- ► NS radius must be larger than 10.7 km (very robust)
- More stringent constraints from future detections
- ► NS radius measurable from dominant postmerger frequency
- Explicitly shown by GW data analysis
- Threshold binary mass for prompt collapse \rightarrow maximum mass M_{max}
- Different mechanisms generate subdominant GW peaks
- Classification scheme of postmerger GW spectra based on presence/strength of secondary peaks (physically motivated)
- Secondary features reveal dynamics of postmerger remnant