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Motivation
About one month ago, I came to GSI…


… to attend the MAT Science Week 

… and to talk with the biophysics group… 


… and I payed a visit to Gabriel that I had not seen for 10 
years. He gave me a ride to the hotel …


… and I told him that I have been doing atomic structure 
calculations.


He exclaimed: “I'm interested in that!” 
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Motivation

4

Xlan<10-4: low opacity ejecta (k≲1 cm2/g)


Xlan>10-2: high opacity ejecta (k≈10 cm2/g)

Kasen et al. Astrophys. J. (2013) and Nature (2017)
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Motivation
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s-block (2)

d-block (10)

p-block (6)

f-block 
(14)

For Z > 30 opacities have great uncertainties 
due to lack of atomic data

Lanthanide series


Actinide series
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Motivation
Atomic data needs for stellar modelling


• Levels energies


• Oscillator strengths (bound-bound  radiative processes)


• Photoionisation cross-sections (bound-free processes)


• Free-free scattering
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Variational Relativistic Atomic Structure Calculations

Multi-Configuration Dirac-Fock (MCDF) method

�E[ ] = �


h |H i
h | i

�
= 0



The physics of Neutron Star Mergers at GSI/FAIR (4-15 June 2018)

MCDF method (Hamiltonian)

7

Hnp =
X

a

hD
a +

X

a<b

P++
ab VabP

++
ab

• “No-pair” (np) Dirac-Coulomb-Breit (DCB) hamiltonian

• One-electron Dirac hamiltonian

hD
a = c↵a · pa + c2(�a � 1) + V N

a

• Two-electrons interaction (in the Coulomb gauge)
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Dirac matrices

Nuclear interaction

Projectors into positive 
energy states

Coulomb interaction Breit interaction
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MCDF method (Atomic States)
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• Configuration state functions (CSF) ☞ Configuration Interaction (mixing) method

• Atomic state function (ASF) ☞ Multi-Configuration (correlation) method

Mixing coefficient of different CSF

Dirac spinor

Slater determinant
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Mixing coefficient of ground and excited CSFs

CSF

Froese Fischer, Comput. Phys. Commun. (1991) 
Grant, Comput. Phys. Commun. (1994)
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MCDF method (QED)

9

P. J. Mohr et al., Phys. Rep. (1998)

Self-energy (one-loop)

Vacuum polarisation (one-loop)

Uehling term

Andreev et al., Phys. Rep. (2008)

Wichmann-Koll term

(two-loops)

+ …

Källén-Sabry term
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Atomic structure calculations
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Zeff(nl)≤20 20≤Zeff(nl)≤60 Zeff(nl)≥60

Correlation Dominant Important Needed

Relativity Needed Important Dominant

QED Marginal Needed Important

Effects on atomic levels

Zeff(nl)=Z-⟨# core electrons⟩nl
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Atomic structure calculations
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RELATIVISTIC EFFECTS

EL
EC

TR
ON

IC
 C

OR
RE

LA
TI

ON

Schrödinger 
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Dirac-Coulomb 
equation

Dirac-Coulomb-Breit 
equation

DCB+QED 
effects

Hartree-Fock 
methods

Configuration 
interaction 
methods

Multi-configuration 
methods MCDFGME

GRASP2K

Cowan code

Multi-Configuration Dirac-
Fock (MCDF) methods

FAC

AUTOSTRUCTURE
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The physics of Neutron Star Mergers at GSI/FAIR (4-15 June 2018)

The “atomic group” at Lisbon
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The MCDFGME code developed by Desclaux and Indelicato implements the 
MCDF method, including:


• Low-order Coulomb-Breit interaction (            ) 


• Uehling vacuum polarisation term


• Self-energy


 


• High-order Coulomb-Breit interaction (              )


• Wichmann-Koll and Källén-Sabry terms


Nuclear mass models options: 


• Point nucleus, uniform charge, exponential, gaussian and Fermi distributions.

The MCDFGME code
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!ab = 0

!ab > 0

}
}

Self-consistent field

As perturbations
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The MCDFGME code
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Current version (2017) computes:


• Level energies (configuration state or multi-configuration state levels)


• Radiative transition probabilities and oscillator strengths 

• Radiationless transition probabilities (Auger and Coster-Kronig)


• Photoionisation cross-sections 

• Electron excitation cross-sections 

• Hyperfine splitting including nuclear mass (isotopic and specific) shifts, and 
field shifts


• Overlap integrals for calculation of shake processes (shake-up and shake-off)…


… and more…
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Fundamental atomic parameters
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International initiative on X-ray fundamental parameters:


• Mass absorption coefficients (photoionisation cross-sections) 


• Fluorescence yields (radiative and radiationless transitions)


• Line intensities (radiative and radiationless transitions, shake processes)


• Electron ionisation cross-sections

• Structure of high-resolution K β1,3 x-ray emission spectra for the elements from Ca to Ge, Ito et al., Phys. Rev. A (2018) 

• Theoretical and experimental determination of K - And L -shell x-ray relaxation parameters in Ni, M. Guerra, J M. Sampaio et al., Phys. Rev. 
A (2018) 

• Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo, J. M. 
Sampaio et al., J. Quant. Spectrosc. Radiat. Transfer (2016) 

• Calculations of photo-induced X-ray production cross-sections in the energy range 1–150 keV and average fluorescence yields for Zn, Cd 
and Hg, J. M. Sampaio et al., At. Data. Nucl. Data Tables (2016)
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Fundamental atomic parameters
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Example: K-shell (1s) fluorescence yield and photoionisation cross-sections in Fe 

• Level energies calculated: 5933 (without correlation)  

• Radiative transition probabilities: 38871


• Radiationless transition probabilities: 309234 

• Photoionisation cross-sections (one energy): 2142

CPU time per transition: ~3-20 seconds (4-CPU, 64-bits, 2.8 GHz) 
Data storage: ~ 24 GB ☞ ~69 kB/transition

Thus,


• Cross-section (one energy): ~7 CPU hours  

• Fluorescence yield: ~1.5 CPU months 
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Auger emitters for cancer therapy
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targeted
Auger electrons: 

• Energy: ~20 - 500 ev


• Range ~1 - 10 nm


LET~ 2 - 30 keV/μm 

High RBE  ☞ Auger-emitters can trigger clusters of 
ionisations near the DNA molecule
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Auger emitters for cancer therapy
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Work in progress

T. Kibedi, A. Stuchbery, B. Lee (ANU) and J. Ekman, P. Jönsson (GRASP2K) and J. M. Sampaio, J. P. Marques (MCDFGME)
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Large-scale calculations
Starting configuration 

(N electrons)

Compute level 
energies N N-1 N-2 MCDFGME

Generate transitions 
input files

Photoionisation 
cross-sections

Radiative 
transitions

Radiationless 
transitions

Pre-
processing

Compute transition 
rates MCDFGME

Photoionisation 
cross-sections Radiative rates Radiationless 

rates

Compute atomic 
parameters

Level transition probabilities

Level intensities and widths


Fluorescence and Auger yields

Line widths

X-ray production 
and X-ray 

fluorescence 
cross-sections

Post-
processing
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Large-scale calculations
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Number of levels increases drastically for f-block elements with open shells  

Kasen et al. Astrophys. J. (2013) and Nature (2017)
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Large-scale calculations
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Level energies for Nd I configurations: 4f46s2, 4f35d 6s2, 4f45d 6s, 4f45d2, …

Work in progress
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Large-scale calculations

Kasen et al. Astrophys. J. (2013)



The physics of Neutron Star Mergers at GSI/FAIR (4-15 June 2018) 23

Summary
• Atomic data needed to model light-curves from neutron star mergers are 

missing or have large uncertainties


• The most relevant elements are lanthanides and actinides (f-block elements) 
which have a large valence space


• There are atomic structure codes that can compute atomic parameters with 
high precision, namely including configuration mixing, multi-configuration 
correlation, relativistic and QED effects


• These codes can handle calculations in the order of hundreds of thousands of 
transitions in an acceptable computational time (months)


• Calculations of large open shells beyond configuration mixing method  seem to 
me impracticable at the current computational capabilities


• Calculations with different codes/methods are useful for intercomparison 



THANK YOU 


