ATOMIC STRUCTURE CALCULATIONS AT LISBON FOR SPECTROSCOPY, CANCER THERAPY, AND...

... NEUTRON STAR MERGERS?

EMMI Rapid Reaction Task Force: The physics of Neutron Star Mergers at GSI/FAIR (4-15 June, 2018)

JORGE MIGUEL SAMPAIO

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Layout

- Motivation
- * Multi-configuration Dirack-Fock (MCDF) method
- * Atomic structure calculations
- * The mcdfgme code
- * Applications
- * Large scale calculations
- * Summary

Motivation

About one month ago, I came to GSI...

... to attend the MAT Science Week

... and to talk with the **biophysics group**...

... and I payed a visit to **Gabriel** that I had not seen for **10 years.** He gave me a ride to the hotel ...

... and I told him that I have been doing atomic structure calculations.

He exclaimed: "I'm interested in that!"

Motivation

 $X_{lan} < 10^{-4}$: low opacity ejecta ($k \le 1 \text{ cm}^2/\text{g}$)

 X_{lan} >10⁻²: high opacity ejecta ($k\approx$ 10 cm²/g)

Kasen et al. Astrophys. J. (2013) and Nature (2017)

Motivation

Atomic data needs for stellar modelling

- Levels energies
- Oscillator strengths (bound-bound radiative processes)
- Photoionisation cross-sections (bound-free processes)
- Free-free scattering

Variational Relativistic Atomic Structure Calculations

$$\delta E[\Psi] = \delta \left[\frac{\langle \Psi | H\Psi \rangle}{\langle \Psi | \Psi \rangle} \right] = 0$$

Multi-Configuration Dirac-Fock (MCDF) method

MCDF method (Hamiltonian) "No-pair" (np) Dirac-Coulomb-Breit (DCB) hamiltonian $H_{np} = \sum_{a} h_{a}^{D} + \sum_{a < b} P_{ab}^{++} V_{ab} P_{ab}^{++}$ **Projectors into positive** energy states One-electron Dirac hamiltonian Nuclear interaction $h_a^D = c\boldsymbol{\alpha}_a \cdot \boldsymbol{p}_a + c^2(\beta_a - 1) + V_a^N \cdot$ **Dirac matrices** Two-electrons interaction (in the Coulomb gauge) $V_{ab} = \frac{1}{r_{ab}} - \frac{\boldsymbol{\alpha}_a \cdot \boldsymbol{\alpha}_b}{r_{ab}} \cos(\omega_{ab}r_{ab}/c) + c^2(\boldsymbol{\alpha}_a \cdot \boldsymbol{\nabla}_a)(\boldsymbol{\alpha}_b \cdot \boldsymbol{\nabla}_b) \frac{\cos(\omega_{ab}r_{ab}/c) - 1}{\omega_{ab}^2 r_{ab}}$ **Coulomb** interaction **Breit interaction**

MCDF method (Atomic States)

Configuration state functions (CSF)
 Configuration Interaction (mixing) method

$$\Phi_{\Pi,J,M}^{\nu}(\vec{r}_{1},\cdots,\vec{r}_{a},\cdots) = \sum_{q} C_{q} \begin{pmatrix} \phi_{n_{1}\kappa_{1}m_{1}}^{q}(\vec{r}_{1}) & \cdots & \phi_{n_{a}\kappa_{a}m_{a}}^{q}(\vec{r}_{1}) & \cdots \\ \vdots & \cdots & \vdots & \cdots \\ \phi_{n_{1}\kappa_{1}m_{1}}^{q}(\vec{r}_{a}) & \cdots & \phi_{n_{a}\kappa_{a}m_{a}}^{q}(\vec{r}_{a}) & \cdots \\ \vdots & \cdots & \vdots & \cdots \\ \end{pmatrix}$$

$$Mixing coefficient of different CSF Slater determinant$$

• Atomic state function (ASF) I Multi-Configuration (correlation) method

MCDF method (QED)

Self-energy (one-loop)

Vacuum polarisation (one-loop)

(two-loops)

Källén-Sabry term

P. J. Mohr et al., Phys. Rep. (1998) Andreev et al., Phys. Rep. (2008)

Atomic structure calculations						
Effects on atomic levels						
	Z _{eff} (nl)≤20	20≤Z _{eff} (nl)≤60	<i>Z_{eff}(nI)</i> ≥60			
Correlation	Dominant	Important	Needed			
Relativity	Needed	Important	Dominant			
QED	Marginal	Needed	Important			
$Z_{eff}(nl) = Z - \langle \# core electrons \rangle_{nl}$						

The "atomic group" at Lisbon

The MCDFGME code

The *MCDFGME* code developed by Desclaux and Indelicato implements the MCDF method, including:

- Low-order Coulomb-Breit interaction ($\omega_{ab}=0$)
- Uehling vacuum polarisation term
- Self-energy

- High-order Coulomb-Breit interaction ($\omega_{ab} > 0$)
- Wichmann-Koll and Källén-Sabry terms

Nuclear mass models options:

• Point nucleus, uniform charge, exponential, gaussian and Fermi distributions.

The physics of Neutron Star Mergers at GSI/FAIR (4-15 June 2018) 13

Self-consistent field As perturbations

The MCDFGME code

Current version (2017) computes:

- Level energies (configuration state or multi-configuration state levels)
- Radiative transition probabilities and oscillator strengths
- Radiationless transition probabilities (Auger and Coster-Kronig)
- Photoionisation cross-sections
- Electron excitation cross-sections
- Hyperfine splitting including nuclear mass (isotopic and specific) shifts, and field shifts
- Overlap integrals for calculation of shake processes (shake-up and shake-off)...

... and more...

Fundamental atomic parameters

International initiative on X-ray fundamental parameters:

- Mass absorption coefficients (photoionisation cross-sections)
- Fluorescence yields (radiative and radiationless transitions)
- Line intensities (radiative and radiationless transitions, shake processes)
- Electron ionisation cross-sections

- Structure of high-resolution K β_{1,3} x-ray emission spectra for the elements from Ca to Ge, Ito et al., Phys. Rev. A (2018)
- Theoretical and experimental determination of K And L -shell x-ray relaxation parameters in Ni, M. Guerra, J M. Sampaio et al., Phys. Rev. A (2018)
- Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo, J. M. Sampaio et al., J. Quant. Spectrosc. Radiat. Transfer (2016)
- Calculations of photo-induced X-ray production cross-sections in the energy range 1–150 keV and average fluorescence yields for Zn, Cd and Hg, J. M. Sampaio et al., At. Data. Nucl. Data Tables (2016)

Fundamental atomic parameters

Example: K-shell (1s) fluorescence yield and photoionisation cross-sections in Fe

- Level energies calculated: **5933** (without correlation)
- Radiative transition probabilities: 38871
- Radiationless transition probabilities: 309234
- Photoionisation cross-sections (one energy): 2142

CPU time per transition: ~3-20 seconds (4-CPU, 64-bits, 2.8 GHz) Data storage: ~ 24 GB I - 69 kB/transition

Thus,

- Cross-section (one energy): ~7 CPU hours
- Fluorescence yield: ~1.5 CPU months

Auger emitters for cancer therapy targeted

Auger electrons:

- Energy: ~20 500 ev
- Range ~1 10 nm

LET~ 2 - 30 keV/µm

 LET: 0.2 keV/μm
 LET: 4-26 keV/μm
 LET: 50-230 keV/μm

С

High RBE

Auger-emitters can trigger clusters of ionisations near the DNA molecule

Number of levels increases drastically for f-block elements with open shells

Large-scale calculations

Level energies for Nd I configurations: $4f^46s^2$, $4f^35d 6s^2$, $4f^45d 6s$, $4f^45d^2$, ... 4f⁴ 6s² (107 levels) 4f³ 5d 6s² (383 levels) Work in Prog 30 25 20 (2J+1) 15 10 10 5 5 0 0 -261.55 -261.545 -261.54 -261.535 -261.53 -261.55 -261.545 -261.54 -261.535 -261.53E (keV) E (keV) 4f⁴ 5d² (4221 levels) 4f⁴ 5d 6s (671 levels) 30 30 25 25 20 20 (2J+1) (2J+1) 15 15 10 10 5 5 0 0 -261.54 -261.535 -261.55 -261.545 -261.535 -261.53 -261.55 -261.545 -261.54 -261.53 E (keV) E (keV)

Large-scale calculations

Ion	Configurations included	# levels	# lines	χ (eV)
FeI	$\mathbf{3d^64s^2}, 3d^74s, 3d^64s4p, 3d^74p, 3d^74d, 3d^74f, 3d^75s, 3d^75p, 3d^75d, 3d^64s4d$	1784	326,519	7.90
FeII	${f 3d^6 4s}, {3d^7}, {3d^6 4p}, {3d^6 4d}, {3d^6 4f}, {3d^6 5s}, {3d^6 5p}, {3d^6 5d}, {3d^5 4s^2}, {3d^5 4s 4p}$	1857	355,367	16.18
FeIII	${f 3d^6}, 3d^54s, 3d^54p, 3d^54d, 3d^54f, 3d^55s, 3d^55p, 3d^55d, 3d^44s4p$	2050	420,821	30.65
FeIV	${\bf 3d^5}, 3d^44s, 3d^44p, 3d^44d, 3d^44f, 3d^45s, 3d^45p, 3d^45d$	1421	217,986	54.91
CoI	${f 3d}^7 {f 4s}^2, 3d^8 4s, 3d^7 4s 4p, 3d^9, 3d^8 4p, 3d^8 4d, 3d^8 5s, 3d^7 4s 4d, 3d^7 4s 5s$	778	62,587	7.88
CoII	${f 3d^8}, 3d^74s, 3d^64s^2, 3d^74p, 3d^64s4p, 3d^75s, 3d^74d$	757	58,521	17.08
CoIII	${f 3d^7}, 3d^64s, 3d^64p, 3d^64d, 3d^65s$	601	34,508	33.50
CoIV	${f 3d^6}, 3d^54s, 3d^54p, 3d^54d, 3d^55s$	728	48,254	51.27
NiI	${f 3d^84s^2}, {3d^{10}}, {3d^84s4p}, {3d^94s}, {3d^94p}, {3d^94d}, {3d^94f}, {3d^95s}, {3d^95p}, {3d^96s}$	174	2,776	7.64
NiII	${f 3d^9}, 3d^84s, 3d^84p, 3d^84d, 3d^84f, 3d^85s, 3d^85p, 3d^86s, 3d^74s4p, 3d^74s^2$	520	25,496	16.18
NiIII	${f 3d^8}, {3d^74s}, {3d^74p}, {3d^74d}, {3d^74f}, {3d^75s}, {3d^75p}, {3d^76s}, {3d^64s^2}$	1644	61,108	35.19
NiIV	${f 3d^7}, 3d^64s, 3d^64p, 3d^64d, 3d^64f, 3d^65s, 3d^65p, 3d^66s, 3d^54s4p, 3d^54s^2$	751	258,305	54.92
NdI	${f 4f^46s^2}, 4f^35d6s^2, 4f^45d6s, 4f^45d^2, 4f^35d6s6p, 4f^45d6p$	18104	24,632,513	5.52
NdII	${\bf 4f^46s}, 4f^45d, 4f^46p, 4f^35d^2, 4f^35d6s, 4f^35d6p, 4f^36s6p$	6888	$3,\!873,\!372$	10.7
NdIII	${f 4f^4}, 4f^35d, 4f^36s, 4f^36p, 4f^25d^2, 4f^25d6s, 4f5d^26s$	1650	232,715	22.14
NdIV	$4f^3, 4f^25d, 4f^26s, 4f^26p$	241	5780	40.4
CeII	$\textbf{4f5d^2}, 4f5d6s, 4f^26s, 4f^25d, 4f6s^2, 4f5d6p, 4f^26p, 5d^3, 4f6s6p, 4f^3$	$5,\!637$	4,349,351	10.8
CeIII	$4f5d, 4f6s, 5d^2, 4f6p, 5d6s$	3,069	868,640	20.19
OsII	${f 5d}^{6}6{f s}, 5d^{6}5f, 5d^{6}5g, 5d^{6}6s, 5d^{6}6p, 5d^{6}6d, 5d^{6}6f, 5d^{6}6g$	3271	1,033,972	17.0
SnII	${f 5s^2 5p}, 5s^2 4f, 5s^2 5d, 5s^2 6s, 5s^2 6p, 5s5p^2, 5s5p 6s, 5s5p 6p$	47	371	14.63

Kasen et al. Astrophys. J. (2013)

Summary

- Atomic data needed to model light-curves from neutron star mergers are missing or have large uncertainties
- The most relevant elements are lanthanides and actinides (f-block elements) which have a large valence space
- There are atomic structure codes that can compute atomic parameters with high precision, namely including configuration mixing, multi-configuration correlation, relativistic and QED effects
- These codes can handle calculations in the order of hundreds of thousands of transitions in an acceptable computational time (months)
- Calculations of large open shells beyond configuration mixing method seem to me impracticable at the current computational capabilities
- Calculations with different codes/methods are useful for intercomparison

THANK YOU