

RRTF, Darmstadt 2018

Experimental nuclear physics for the r-process: Masses - Discussion

- > Available techniques
- What can be done!
- Precision limits etc.
- Soon to come (T. Dickel)

-PLANCK-INSTITUT

Klaus Blaum June 7th, 2018

Klaus.blaum@mpi-hd.mpg.de

Why measuring atomic masses?

Max Planck Institut for Nuclear Physics

Why are the limits?

Limits	Storage ring	Penning trap (MR-ToF)
accessible T _{1/2}	μS	ms
sensitivity/ yield	1/day	1/min
resolving power	~ 100 keV	~ 1 keV (unstable) ~ 1 eV (stable)
precision	~ 10 keV	~ 100 eV (unstable) < 1 eV (stable)

Limit on yields: Storage ring

NUCLEAR ASTROPHYSICS

Star bursts pinned down

One of the main uncertainties in the burn-up of X-ray bursts from neutron stars has been removed with the weighing of a key nucleus, ⁶⁵As, at a new ion storage ring.

NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

Rate of ⁷¹Kr was just 2 ions/day

X.Tu, et al., PRL 106 (2011) 112501

aax Planck Institut for Nuclear Physic:

Limits on yields: Penning traps / MR-ToF

AAX PLANCK INSTITUTH FOR NUCLEAR PHYSICS

Limits on mass precision: traps (I)

Composition of the outer crust of a neutron star

Limits on mass precision: traps (II)

Electron configuration of xenon (Z = 54):

 $\begin{array}{l} 1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,4s^2\,3d^{10}\,4p^6\,5s^2\,4d^{10}\,5p^6 \\ [\text{Kr}]\,5s^2\,4d^{10}\,5p^6 \end{array}$

Measure the mass difference of Xe^{17+} and Xe^{18+} yields the binding energy of the 18th electron. \rightarrow Stringent tests of BS-QED calculations!

PENTATRAP@MPIK: $\delta m/m = 1.1 \cdot 10^{-11} (\delta m \sim 1.4 \text{ eV})$

Exp. (prel.): $B(4d^{1})_{Xe} = 434.6 (1.4) \text{ eV}$

<u>Theorie :</u> *B*(4d¹)_{Xe} = 434.0 (0.5) eV

NALT AND ADDRESS

Approved experiments at GSI

Timo Dickel

MAX PLANCK INSTITU FOR NUCLEAR PHYSE

NARTIANCEGRATIATINT

Mass Measurements with the FRS Ion Catcher

Reach of Mass Measurements in FAIR Phase-0

T. Dickel, Planned Experiments at the FRS and recent results from TITAN @TRIUMF, Rapid Reaction Task Force: n-mergers, Darmstadt, Germany, June 4th – 15th, 2018

Open questions - Discussion

- > Is there a key nuclide (holly grail) in r-process physics?
- > Is there a key isotopic chain?
- > What is the required mass uncertainty? 1keV, 10keV, ...
- Which part of that nuclear/atomic physics data is already known, which part remains yet unmeasured, and which part will be accessible in the new RIB-facilities?
- Many nuclides are not accessible and their masses have to be predicted. What are the models of choice? Any specific tests needed?

Future perspectives e.g. at FAIR

Limits on resolving power: traps

S. Eliseev *et al.*, Phys. Rev. Lett. 110 (2013) 082501

Yield Direct Mass Measurement of ²⁰⁸Hg Nuclide

L. Chen, Yu.A. Litvinov, W.R. Plass, et al., PRL 102 (2009) 122503