

## **PID** with the



Markus Moritz

03.05.2018 PID Workshop

"...Calorimetry is the measurement of energy via "complete" absorption."

Tree fundamental processes for photons:

- Photoelectric effect
  - dominates at low energies
  - photons completely absorbed by a bound electron
  - cross section ~Z<sup>4-5</sup>
- Compton Scattering
  - only a part of the energy is transferred to a bound electron
  - cross section ~Z
- Pair Production
  - above 1.022 MeV conversion into an electron-positron pair within the coulomb field from the nucleus
  - cross section ~Z<sup>2</sup>





"....Calorimetry is the measurement of energy via "complete" absorption."

$$I(x) = I_0 \cdot e^{-(\tau + \sigma + \kappa) \cdot x}$$

with the coefficients:  $\tau$  photoelectric effect  $\sigma$  Compton scattering  $\kappa$  pair production

#### • Mean free path of a photon:

length of the material where the number of primary photons is reduced by a factor 1/e

$$\Lambda_p = \frac{9}{7} X_0$$



PID with the PANDA EMC • Markus Moritz •

"...Calorimetry is the measurement of energy via "complete" absorption."

Interaction of charged particles:

inelastic coulomb scattering

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \frac{nz^2}{\beta^2} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left[\ln\frac{2m_e c^2\beta^2}{I(1-\beta^2)} - \beta^2\right]$$

**Bethe Bloch** 

with  $\beta = v/c$ , *z* the particle charge, *n* the electron density of the target, *l* the mean excitation potential of the target

- Bremsstrahlung
  - due to deflection and therefore acceleration by the coulomb field of the absorber
  - cross section ~1/m<sup>2</sup> of the penetrating particle
  - above critical energy  $E_c^{\approx} 550 \text{ MeV/Z}$  domination process

• energy loss 
$$-\frac{dE}{dx}$$

$$-\frac{dE}{dx} = \frac{E}{X_0}$$

 $E_c(PbWO_4) \approx 9.5 \text{ MeV}$ 

• Radiation length X<sub>0</sub> of a high energetic charged particle: fraction of 1/e from the mean free path

$$X_{0} = \frac{A}{4\alpha N_{a} Z^{2} r_{e}^{2} \ln\left(183Z^{-\frac{1}{3}}\right)} \approx \frac{1}{Z^{2}}$$

with  $N_a$  Avogadro constant,  $r_e$  the classical electron radius and  $\alpha$  the Sommerfeld's fine-structure constant

$$X_0(PbWO_4) \approx 0.89 \text{ cm}$$

Combination of all effects: Electromagnetic shower development



Amount of particles roughly doubles each radiation length

## transversal spread

due to multiple scattering processes

$$R_{_M} \approx \frac{21 MeV}{E_c} \cdot X_0$$



03.05.2018

Justus-Liebig-Universität Gießen

#### Hadronic shower

Impinging hadron creates a cascade of inelastic hadronic interactions with the nuclei and nucleons of the absorber material.



new hadrons (mainly pions) can be created  $\pi^0 \rightarrow \gamma\gamma \rightarrow \text{new EM-shower}$ 

Hadronic absorption length



with  $N_a$  Avogadro constant,  $\rho$  the absorber density and  $\sigma_{\mu}$  the cross section for inelastic interactions

Short range of strong interaction

- absorption length much longer  $\lambda \gg X_o$
- hadronic shower less "concentrated", than EM-shower ->PID!
- inelasticity < 50% of the energy are carried by secondaries</li>
- non visible energy: binding energy, nuclear fragments neutral particles

#### The Electromagnetic Calorimeter





Forward Calorimeter based on 1512 Modules with alternating layers of lead sheets and organic plastic scintillator tiles

Dynamic range: 10 MeV-15 GeV

#### **Forward Calorimeter Design**



## **Target Calorimeter Design**



Energy of each gamma distributes over several crystals



Energy sum over for each cluster necessary

EMC with a six gamma event



## Example: Experiment with 1057.7 MeV $\gamma$ 's



PID with the PANDA EMC • Markus Moritz •

#### **PANDA Reconstruction Algorithm**

1. Finding of a continuous area of scintillator modules with energy deposition

#### PnDEmc2DLocMaxMaxFinder:

- Start at module with largest energy deposit
- Add neighbors if E>E<sub>th,xtl</sub>
- Stop if no more neighbor above E<sub>th,xtl</sub>
- Accept Cluster if E<sub>sum</sub>>E<sub>th,cl</sub>

|           | TS EMC       | FW EMC       |
|-----------|--------------|--------------|
| $E_{xtl}$ | $3{ m MeV}$  | $8{ m MeV}$  |
| $E_{cl}$  | $10{ m MeV}$ | $15{ m MeV}$ |
| $E_{max}$ | $20{ m MeV}$ | $10{ m MeV}$ |

user has to take care ?!?



Number of y's default threshold



User cluster threshold necessary



| Threshold       | Detected 1-<br>Photon-events |
|-----------------|------------------------------|
| Default (3 MeV) | ~ 35%                        |
| 10 MeV          | ~ 73%                        |
| 15 MeV          | ~ 82%                        |
| 20 MeV          | ~ 86%                        |





• Markus Moritz •

- 2. Search for bumps within each cluster
  - A cluster can be formed by more than one particle if the angular distances of the particles are small

bump splitting PndEmcMakeBump

- **Bump:** a local maximum inside the cluster while all neighbors smaller  $E_{LocalMax} > E_{max}$ 
  - Highest Energy E<sub>NMax</sub> of any of the N neighbors must fulfill: 0.5(N-2.5)>E<sub>NMax</sub>/E<sub>LocalMax</sub>

If bump: total cluster energy has to be shared

Iterative algorithm assigns weight to each crystal:

$$E_{bumb} = \sum_{i} w_{i} E_{i} \quad w_{i} = \frac{E_{i} \exp(-2.5 r_{i} / r_{m})}{\sum_{j} E_{j} \exp(-2.5 r_{j} / r_{m})}$$

...until position of bump center (via centre of gravity method) stays stable



2 GeV pi0

|           | TS EMC       | FW EMC       |
|-----------|--------------|--------------|
| $E_{xtl}$ | $3{ m MeV}$  | $8{ m MeV}$  |
| $E_{cl}$  | $10{ m MeV}$ | $15{ m MeV}$ |
| $E_{max}$ | $20{ m MeV}$ | $10{ m MeV}$ |

 $r_m$  = Molière radius  $r_i r_i$  = distance of the ith

 $r_i, r_j$  = distance of the ith and jth crystal to the center of the bump

i = index over all crystals

#### **PID**-Electrons-

- Most important measure: E<sub>cluster</sub>/p
  - p: reconstructed momentum
  - E<sub>cluster</sub>: deposited energy of charged particle
  - Electron: complete energy deposition within EMC  $E_{cluster} / p \approx 1$
  - Hadrons and µ deposit only a fraction of their kin. energy



PID with the PANDA EMC • Markus Moritz •

## PID –E/p-



PID with the PANDA EMC • Markus Moritz •

### **PID**-Electrons-

Further options:

- shower shape analysis
  - E<sub>1</sub>/E<sub>9</sub>
  - -> Energy central crystal / sum 3X3
- Lateral moment of the cluster:

$$mom_{LAT} = \sum_{i=3}^{n} E_{i}r_{i}^{2} / \left(\sum_{i=3}^{n} E_{i}r_{i}^{2} + E_{1}r_{0}^{2} + E_{2}r_{0}^{2}\right)$$

- -n: number of modules associated to the  $-r_i$ : lateral distance between the central shower
- $-E_i$ : deposited energy in the iTH module  $-r_0$ : the average distance between two with  $E_1 \ge E_2 \ge \dots \ge E_n$
- and the iTH module modules.
- Zernike moments

Describing energy distribution within a cluster by radial and angular dependent polynomials





20

PID with the PANDA EMC

• Markus Moritz •

Justus-Liebig-Universität Gießen

## **PID**-Electrons-

- Lot of measures helpful for electron identification
  - How to find optimum selection criteria?
  - neural network: Multilayer Perceptron (MLP)
  - Input for training:
    - $10^7$  tracks of *e*,  $\pi$ ,  $\mu$  and *p*
    - Momentum range: 0.2 15 GeV/c
    - 10 Inputparameter:
      - E/p, E1/E9, E9/E25, lat. energy dist., Zernike moments
    - Answer: "1" for e and "-1" for  $\pi$ ,K,µ,p



almost clean electron recognition with a quite small contamination of muons and hadrons can be obtained by applying a cut on the network output

#### The electron efficiency and contamination rate

#### e-probability > 20%

- p>1GeV/c
  - efficiency >98%
  - misidentification  $\pi = 2\%$
- p<1GeV/c</li>

•>= 85 % eff.

```
•up to 20% miss id. K
```



#### e-probability > 95%



PID with the PANDA EMC • Markus Moritz •

Justus-Liebig-Universität Gießen

PID –E/p-



R.A. Kunne, IPN Orsay

23

# Thank you for your attention