

AUSTRIAN

SCIENCES

Particle Identification with the **Barrel TOF**

Dominik Steinschaden

Content

- Introduction to the Barrel TOF
 - Motivation
 - Requirements
 - Design
- Specifications and PandaRoot implementation
- Relative Time of Flight based PID
- Standard Time of Flight PID
- Open issues

Introduction

Barrel TOF

- Barrel-shaped scintillator tile hodoscope
- Timing counter for charged particles

Motivation and Requirements

Motivation

- Trigger less, continuous read out at high collision rates (20 MHz)
 - Separation of single events at high collision rates
 - Event/ T0 determination
 - Intelligent online software trigger by event topology to reduce the data
- Reconstruction of tracks
 - Charge discrimination and gamma conversion detection in front of the EMC
 - Ghost track reduction
 - Relative time-of-flight together with FTOF (t0 determination)

separation power

transverse momentum [GeV/c]

_

—

AUSTRIAN CADEMY OF SCIENCES

Good time resolution

AUSTRIAN ACADEMY OF SCIENCES

- $-\sigma < 100 \text{ ps}$
- Fast readout and signal processing
- Robust and reliable for commissioning
- Minimum material budget
 - 2% of a radiation length
 - 2 cm radial thickness
- Large angular acceptance
 - $(22^\circ \le \theta \le 140^\circ)$
- Radiation hard

Design

Barrel TOF

- Barrel-shaped scintillator tile
 hodoscope
 - 16 super-modules
 - 48 signal railboards
 - 1920 scintillator modules
 - 3840 signal channels
 - 15360 SiPMs

SMI – STEFAN MEYER INSTITUTE

Barrel TOF

- Barrel-shaped scintillator tile
 hodoscope
 - 16 super-modules
 - 48 signal railboards
 - 1920 scintillator modules
 - 3840 signal channels
 - 15360 SiPMs

0.2 mm 0.8128 mm 0.2 mm 0.3 mm Тор 1 SG1 18 µm Cu 0,5 mm _0,32 mm 100 µm FR4 0,5 mm 2 S1 . 18 µm Cu **Barrel TOF** 0,18 mm 100 µm FR4 3 SG1 18 µm Cu Barrel-shaped scintillator tile SG2 . 18 µm Cu 4 5 S2 6 SG2 7 SG3 8 S3 2 mm 9 SG3 10 SG4 11 S4 12 SG4 13 SG5 14 S5 15 SG5 ÷ 16 Bottom Signal Screening ground Signal ground

- hodoscope
 - 16 super-modules —
 - 48 signal railboards —
 - 1920 scintillator modules _
 - 3840 signal channels —
 - 15360 SiPMs

Barrel TOF

- Barrel-shaped scintillator tile hodoscope
 - 16 super-modules
 - 48 signal railboards
 - 1920 scintillator modules
 - 3840 signal channels
 - 15360 SiPMs

A detector module consists of a scintillator tile (blue), read out by 4 SiPMs (red) on both sides. The PCB cards (yellow) connect the SiPM and the signal railboards.

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

Time and Position Resolution

Erlangen 2017

AUSTRIAN

SCIENCES

20

40

x [mm]

60

80

0

0

14/35

•

•

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

Implementation of the Barrel TOF in PandaRoot

- Fully implemented
 - Current design
 - Scintillator, SiPM, PCB boards
 - Time resolution : $\sigma = 75$ ps
 - Event and time based
 - Pile up
 - Event mixing
 - Access to
 - Time
 - Position
 - Errors
 - Charge deposit

Geometrical Acceptance and Efficiency

- Angular acceptance
 - $22^{\circ} < \theta < 140^{\circ}$
 - No forward end cap!
 - FTOF : $0^{\circ} < \theta < 5^{\circ}$
- Geometrical efficiency
 - Active area
 - 4.9 m²
 - ~ 86 %
 - · Gap for support structure, target, wrapping

Geometrical Acceptance and Efficiency

- Angular acceptance
 - $22^{\circ} < \theta < 140^{\circ}$
- Geometrical efficiency
 - Active area
 - 4.9 m²
 - ~ 86 %
 - Gap for support structure, target, wrapping
 - Geometrical efficiency > 91 %
 - Forward peaking distribution, emission angles

• Angular acceptance

- $-22^{\circ} < \theta < 140^{\circ}$
- Geometrical efficiency
 - Active area
 - 4.9 m²
 - ~ 86 %
 - Gap for support structure, target, wrapping
 - Geometrical efficiency > 91 %
 - Forward peaking distribution, emission angles
- DAQ efficiency > 99 %
 - PETsys TOFPET2 ASIC
 - Internal buffer for up to 4 hits

Relative TOF based PID

- No start time detector in PANDA
 - T₀ important for Event building, Tracking, TOF . . .
- Relative time of flight using TOF counters

• No start time detector in PANDA

- T₀ important for Event building,
 Tracking, TOF . . .
- Relative time of flight using TOF counters
 - Calculate possible t_s for all detected tracks
 - Using reconstructed track parameters
 - Mass assumption for p, K, π , μ , e
 - evaluate all 5^N mass configurations
 - Compare their X² weights
 - Select the most promising

• For the detected signals in the Barrel TOF (blue) the corresponding possible track creation times according to a certain mass assumption are calculated (green and red). The combination providing the best conformity is equivalent to the most probable mass configuration.

• Evaluate all 5^N mass configurations

- Minimization of the X²

$$\Psi_{W_{(m_{i,...},m_{N})}} = \frac{\sum_{i=1}^{N} (t_{i,0} - t_{0})^{2}}{\sigma_{i,TOF}^{2}}$$

$$t_{i,0} = t_{i} - \frac{l_{i}}{c_{i}} \sqrt{\frac{m_{i}^{2}}{n_{i}^{2}} + 1}$$

- Either select most probable mass configuration
 - Lowest X² Value
- Or get a p.d.f for every track and mass hypothesis

Distribution of determined t 0 for events with three or more primary tracks with the relative time-of-flight algorithm.

The T0 resolution $\sigma = 57$ ps

Including secondaries $\rightarrow \sigma = 71 \text{ ps}$

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

WWW:OEAW.AC.AT/SMI

AUSTRIAN ACADEMY OF SCIENCES

Open issues

- Proper event sorting needed?
 - Ignore outliers
 - ALICE Collaboration
- Multiple reconstructed and matched tracks needed
 - Combined TOF counters!
 - Special treatment of secondaries?
- T0 window would improve failure rate
- Only implemented in PandaRoot locally
 - Only using Barrel TOF at the moment
 - Low Efficiency!

digiParticleMulti ratio [%] Entries 100000 18 4.314 Mean 3.463 RMS 16F 14 12 10 8 6 4 0 10 20 15 Hits in Tof counters per event

Particle multiplicity in Tof counters

- Unbiased by previous T0 determination
- Get p.d.f and T0 in one step
- Get a probability for a T0 !

WWW:OEAW.AC.AT/SMI

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

Time-of-Flight based PID

• TOF based PID

- Use tracking information and mass assumption
- Calculate expected time of flight • $t_i \equiv l \cdot \sqrt{\left(\frac{m_i}{n}\right)^2 + 1}$
- Compare with the measured time of flight
 - Consider resolution of the TOF System

A normalized Gaussian is created at the expected time-of-flight for the mass assumption of a proton (blue). The probability density is evaluated at the measured time-of-flight in the Barrel TOF (green).

Time-of-Flight Resolution

Evaluation of the TOF system

- Including momentum, path length and time resolution
 - Comparison of calculated time-of-flight and measured time in the Barrel TOF
- Evaluated for various parameters
 - Momentum, transverse momentum, track length, particle species, hit position . . .

Simulation Settings

- Box generator
- Only inner barrel detectors activated
 - MVD, STT, GEM, DIRC, BTOF
 - Very clean events!
- MVDSTTGEM tracker
- Only tracks with a MC True Matching of the Track and the BTOF signal were considered

Time-of-Flight Resolution

Evaluation of the TOF system

- Including momentum, path length and time resolution
 - Comparison of calculated time-of-flight and measured time in the Barrel TOF
- Evaluated for various parameters
 - Momentum, transverse momentum, track length, particle species, hit position . . .
- Dependence on
 - Particle species
 - Transverse momentum pt
 - Minimum pt required ~ 200 MeV/c

Evaluation of the TOF system

- Including momentum, path length and time resolution
 - Comparison of calculated time-of-flight and measured time in the Barrel TOF
- Evaluated for various parameters
 - Momentum, transverse momentum, track length, particle species, hit position . . .
- Dependence on
 - Particle species
 - Transverse momentum pt
 - Minimum pt required ~ 200 MeV/c

• TOF based PID

- Separation power

 $n_{\sigma} = \frac{|tof_{p} - tof_{K}|}{max(\sigma_{p}, \sigma_{K})}$

• >2\sigma below 1 GeV/c

separation power

- TOF based PID
 - Separation power

 $n_{\sigma} = \frac{\left| tof_{p} - tof_{K} \right|}{max(\sigma_{p}, \sigma_{K})}$

- >2 σ below 1 GeV/c
- Implemented in PandaRoot
 - PID Stage
 - TOF resolution functions
 - Normalized p.d.f

separation power

• Implemented in PandaRoot

- TOF resolution functions for every particle hypothesis
- Normalized p.d.f

PID stage

- Add new task
 - PndPidSciTAssociatorTask *assSciT= new PndPidSciTAssociatorTask();
 - fRun->AddTask(assSciT);

AUSTRIAN ACADEMY OF SCIENCES

Open Issues

• Pattern matching

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

•

•

280

PidCandidates_prim_TOF

266

PidCandidates_prim_TOF

PidCandidates_TOF_prim

statsTOFPID 52 15264 Entries 4500 Mean Std Dev DPM generator 4000 3500 - 6 GeV/c 3055 3000 Full Panda detector 2608 2500 • Ideal tracking 1925 2000 1500 954 907 1000 742

Stats for the TOF track matching

PID Computing Workshop, Dominik Steinschaden, 3.5.2018

scitPoints_prim

PidCandidates

PidCandidates_Prim

PidCandidates_TOF

500

0

MCTracks_prim

scitPoints

0

0

Open Issues

- Pattern matching
- T0 determination
- Secondary treatment
 - Track creation times
 - Path length