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Mean energy loss of charged particles in matter

@ Moderately relativistic charged particles lose energy in matter primarily by ionization. The mean rate of
energy loss (or stopping power) is given by the Bethe-Bloch equation
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Fundamental constants
r.=classical radius of electron
m.=mass of electron
N_=Avogadro’ s number

Absorber medium

= mean ionization potential

= atomic number of absorber
= atomic weight of absorber
= density of absorber

= density correction

C = shell correction

oD >N —

¢ =speed of light

Incident particle
z = charge of incident particle
B = v/c of incident particle
y = (1-p9) 1"
Wi.ax= Max. energy transfer
in one collision

@ Formula needs to be modified for electrons

@ Bethe-Bloch formula is not valid for slow
particles py<0.02 where dE/dx o 3

@ Low energies: shell corrections (v, ~ Ve grbital)
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@ High energies: density corrections (Polarizatior

along trajectory)

T B“{:p/MC

By =3-4

Minimum
ionizing particles (MIP):

By =3-4

dE/dx falls|~ B-2]kinematic factor
[plecise dependence: ~ B-59

dE/dx rises|~ In(By)?; relativistic rise
[rel. extension of fransversal E-field]

Saturation at large (By) due to
density effect
[polarization of medium

10000 Shell correction:

Capture process Is possible
Units: MeV g cm?

MIP looses ~ 13 MeV/cm
[density of copper: 8.94 g/cm?)



Mean energy loss in the experiment

In a practice, the experimental energy loss is a (semi-) empirical equation.
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In a practice, the experimental energy loss is a semi-empirical equation.

1. Path length in each drift cell differ due to variations in the polar angle of the tracks and of the track geometry.
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In a practice, the experimental energy loss is a semi-empirical equation.
1. Path length in each drift cell differ due to variations in the polar angle of the tracks and of the track geometry.

2. External atmospheric pressure variations, which directly influence gas density and thus the gas gain.
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In a practice, the experimental energy loss is a semi-empirical equation.
1. Path length in each drift cell differ due to variations in the polar angle of the tracks and of the track geometry.
2. External atmospheric pressure variations, which directly influence gas density and thus the gas gain.

3. Non-uniformity of gas gain in different Drift camber cells and of charge collection across cells.
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Mean energy loss in the experiment

In a practice, the experimental energy loss is a semi-empirical equation.
1. Path length in each drift cell differ due to variations in the polar angle of the tracks and of the track geometry.
2. External atmospheric pressure variations, which directly influence gas density and thus the gas gain.
3. Non-uniformity of gas gain in different Drift camber cells and of charge collection across cells.

4. A space-charge effect, dependent on the polar angle, which causes a screening of the electric field and leads
to gain variations.

- “'j dE/dx Profiles
= 35 0.2<p<0.4 GeV
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Mean energy loss in the experiment

In a practice, the experimental energy loss is a semi-empirical equation.
1. Path length in each drift cell differ due to variations in the polar angle of the tracks and of the track geometry.
2. External atmospheric pressure variations, which directly influence gas density and thus the gas gain.
3. Non-uniformity of gas gain in different Drift camber cells and of charge collection across cells.

4. A space-charge effect, dependent on the polar angle, which causes a screening of the electric field and leads
to gain variations.

After various calibrations, Estimate the dE/dx for every track by the truncated mean method.

- “'j dE/dx Profiles
= 35 0.2<p<0.4 GeV
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Mean energy loss and PID

@ Low Momentum charged particles and most of recoiled protons will not reach outer detectors.

@ dE/dx measured in CDC will be the primary source for particle ID in this case

|Energy loss in CDC|
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Truncated mean method

Goal: Achieve the optimal separation of different particle types using dE/dx
@ Estimate dE/dx mean value and eventually the width

Method: Truncated mean
@ Drop some hits with largest dE/dx values from the track

@ QOptimize truncation to achieve the Lowest mis-ID.
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@ 1M events Protons (left) & Pions (right) generated and transported through the GlueX detector
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@ 1M events Protons (left) & Pions (right) generated and transported through the GlueX detector

number of hits after truncation (protonflat) number of hits after truncation (pip)
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FOM

@ Average energy loss in the CDC for protons (red) and 7t+ (blue)

@ FOM Mis-ID: the optimal truncation correspond to the lowest mis-ID value

p= 0.820 GeV/c, 6= 75.88°, truncation low= 0%, truncation high= 0%, mis-ID= 0.25
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Optimal truncation scan

@ Scan over all the (p, 8) bins and for all the truncation combinations (low dE/dx, High dE/dx cut)
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Momentum vs. 8 vs. mis-id (proton , pip)
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Optimal truncation results

P [GeV/c]

@ Optimal truncation based on mis-ID: 20% - 40% cut on the hits with high dE/dx

Momentum vs. 6 vs. optimal mis-id (proton , pip)
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Thank you for your attention
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