

STT & PID

Peter Wintz for the PANDA-STT Group

PID Workshop, GSI, May-4th, 2018

STT & PID Outline

- Basics: PID with straws
- STT & PID by dE/dx
- Testbeams
- Data analysis & PID results
- Next steps

→ Dedicated STT talk in CM 18/2 (tracking, PID)

Straw Basics – Detection Method (1)

- Gas ionisation by charged particle (poisson distributed clusters)
- $\langle dE/dx \rangle \sim 2.5 \text{ keV/cm} \sim 94 \text{ I.P./cm}$ in Argon (ntp) for MIP
- E-field between anode wire and cathode wall, e⁻ drift to wire
- Avalanche (plasma) by Coulomb collisions at thin wire (E ∝1/r, Ø ~ 20μm, A ~10⁴-10⁵)
- Gas admixture (e.g. CO₂) to quench UV-photons from avalanche
- Arrival time of earliest drift e⁻ yields shortest track distance to wire
- Signal electronics: low threshold (NL), fast peaking time
- Calibration of isochrone radius drift time relation: r_{iso}(t_{drift})
- $r(t) = \Sigma P_i \times t_i$ charact. for gas props, non-lin. v_{drift} by E-field
- Resolve point on isochrone by multiple straws, hit by same track
- Isochrone resolution smeared by
 - ion cluster distribution (poisson), e-cloud diffusion, ...
 - straw tube geometry, wire centering, wire sag, ...
 - E-field, gas density & temperature, gas (ad-)mixtures, ...
 - electronics, signal prop., calibration SW, tracking SW (kalman), ...

1.5

Straw Basics – Detection Method (2)

- PANDA solenoid magnetic field perpendicular to straw E-field
- Additional Lorentz angle $(F=q \cdot v \times B)$ for e- drift
- Spiral electron drift path instead of radial drift
- Longer drift paths & drift times (simulation for Ar/CO₂ @ 2 bar)
- Isochrone circle shape unchanged
- $r(t) = \Sigma P_i \times t_i$ relation, different P_i for non-magnetic & solenoid fie
- Stereo-angle (~ few degrees): still circle shape in good approx.
- Do not forget: straw is cylindrical object (3D)
- Track angle (θ) enters for track ionisation path length dE dx
- Signal propagation along wire (~ 5 ns/m, damping)

- Charge measurement to determine particle specific energy-loss (dE/dx) for PID
- Method: particle species (mass) determined by known momentum p and measured dE/dx
- Bethe-Bloch: $\langle -\frac{dE}{dx} \rangle \propto 1/v^2$ up to $p/Mc \cong 1$, min. at $\sim p/Mc \cong 3$
- dE/dx fluctuates (Landau): mean and most prob. dE/dx differ
- Long Landau tail by created δ- and other energetic electrons
- Use truncated mean as better *dE/dx* estimator per track
- Truncate ~15-50% of highest entries (=tail) in *dE/dx* track sample
- Then $dE/dx|_{trunc}$ shifted, but more gaussian distributed and
- most prob. $\frac{dE}{dx}/_{trunc} \cong mean \frac{dE}{dx}/_{trunc}!$
- Sometimes also small truncation of lowest entries is used

Straw Basics – Detection Method (4)

- Typical resolution reached: $\sigma_{dE/dx} < 10\%$ ($\sigma/_{mean}$)
- Empirical relation (older) for resolution in Argon: ~ 11.5%

$$\frac{\delta I_{\rm mp}}{I_{\rm mp}} = 0.115 \left(\frac{1\,{\rm mbar}}{Lp}\right)^{0.32} \left(\frac{Z_{\rm Ar}I}{ZI_{\rm Ar}}\right)^{0.32} \left(\frac{100}{n}\right)^{0.14} \quad ({\rm FWHM})$$

Blum, Riegler, Rolandi, Particle Detection with Drift Chambers

#straw hits (data),

K. Pvsz. STT-TDR

- STT: $\sigma_{dE/dx} \approx 10\%$ ($\sigma/_{mean}$, n ~ 25 samples, L ~ 25 cm track length, p=2 bar)
- TPC-ALICE: $\sigma_{dE/dx} \approx 5\%$ (n = 159 samples, Neon gas, reference: W. Yu, Bari TRD Workshop)
- dE/dx information by straws:
 - Measure charge in certain time intervall: $\sum Q / \Delta t$ and $\sum Q = f(\Delta t_{drift}(r), dx(r))$
 - No full charge integration, fast peaking time & cancellation of slow ion tail
 - Specific: non-linear e⁻ drift $(v_{drift} \propto 1/r)$ and cylindr. gas ionis. volume (variable dx)
 - PANDA-STT measures charge by signal width or signal area (TDC or ADC)

PANDA – STT

- 4224 straws in 19 axial (green) and 8 stereo (±3°) layers (blue/red)
 - 27µm Al-Mylar film, 1400 mm length, 10 mm diameter
 - Ar/CO₂ gas mixture at 2 bar pressure
 - X/X₀ = 1.25% by self-supporting quad-layers
 - Drift time readout & spatial resolution (σ_{xy} = 150µm, σ_z = 2-3 mm)
 - Charge readout for PID by dE/dx (p/K/ π < 1 GeV/c)
 - Momentum resolution $\sigma(p)/p \sim 1-2\%$ (@ 2T, STT+MVD)
 - Continuous data stream readout (~ 15GB/s)
 - Main input for real-time SW trigger (event ID)

Straw materials

Mitglied der Helmholtz-Gemeinschaft

Testbeams in 2016/2018

- New beam test area, counting rooms and various detector systems set up in 2016
- Two straw test systems installed for both readouts (TDC / ADC)
- Proton and deuteron beams, momentum range: 0.5 3.0 GeV/c
- Beams in 2016 (April/Dec) and 2018 (March/April)
- Covered dE/dx measurement range: ~ 5 50 keV/cm (= 1-10× MIP, in Ar/CO₂ at 2 bar)
- Straw setups with 24 straws per layer, several layers readout
- Tracks with (>) 24 hits, similar to PANDA-STT

One of the two straw test systems.

Test setups in new beam area. Beam from the back with ~2m beam line height.

Beamdata Analysis (1)

1500

4000

3500 3000

2500

1500 1000

500

t0 vs channel 1st hits corr

120

- Hitmap and beam position
- Drift time spectra (offset corrected)
- Tmax ~ 230ns

ayer no.

Mitglied der Helmholtz-Gemeinschaft

Beamdata Analysis (2)

- Charge information by time-over-threshold (pulse width, yellow arrrow)
- ToT is drift time dependent, varies over straw radius
- ToT higher close to wire (more $e^{-/\Delta t}$, $v_{drift} \propto 1/r$)

Beamdata Analysis (3)

ToT/dx seems constant over larger radial distance (track to wire distance)

1000

6000

4000

2000

- ToT/dx distribution shows Landau-shape
- Determine truncation method

totoverdx_corr_vs_rdist

Determine which observable for PID

totoverdx corr vs chan

Beamdata Analysis (4)

- ToT/dx distribution shows Landau-shape
- Truncation method:
 - truncate single ToT/dx hits
 - few with highest ToT/dx per track
 - fewer with lower ToT/dx per track
- ∑ToT/∑dx per track seems good observable for PID
 - distribution highly gaussian

May-4th, 2018

der Helmholtz-Gemeinschaft

Beamdata Results

- Testbeam data 2016 & 2018
- Proton & deuteron beams, 0.6 2.5 GeV/c
- Same! ASIC settings (gain, thresh., low NL, ..)
- Separation ΣToT / Σdx for different P/M
- Resolution: 5.5 % 9.0 % (analysis ongoing)
- (Spatial resolution not discussed today)

Results: PID By ToT

- ToT results (deuteron, proton beam & cosmics)
 - S ~ 3.3* (K/p @ 750 MeV/c, TDR: S ~ 5)
 - S ~ 5** (K/p @ 390 MeV/c, TDR: S ~ 8)
 - S ~ 9*** (π/p @ 300 MeV/c, TDR: S ~ 13)

*1.5 GeV/c deuteron, 2.5 GeV/c proton **1.5 & 0.75 GeV/c deuterons ***0.6 GeV/c deut. & cosmics

 All TDR separation power w/ 10% dE/dx resolution and ADC readout

 \rightarrow ~ 60-70% of TDR separation power reached by ToT

PID by dE/dx simulation for STT (from STT-TDR), 10% dE/dx resolution assumed, truncated mean method

Results Summary

- Concentration on ASIC/TRB readout here (analysis by Peter)
 - Particle separation observable used *SToT/Sdx*
 - Truncation method applied
 - Other PID observable might be possible (ToT drift time corrected ..)
 - Dynamical ToT range limited (pulse width \leftrightarrow high rate capability)
 - Dynamical ToT range << dE/dx range
- ADC readout (expected) results & methods similar
 - WF sampling, full pulse shape \rightarrow pulse shape integration
 - Larger dyn. range: pulse area instead of pulse width (ToT)
 - System set up ongoing, non-standard & completely new readout system layout
 - Results for FADC test system in TDR

Next Steps

- Input to simulation (proposal):
 - PID separation observable ΣToT/Σdx (trunc.) as function of P/Mc
 - Distributions (gaussian) from data
- Determine PID capability for simulated reactions
 - Single tracks \rightarrow event (pairs of same particle species)
 - Simulation of PID reaction channels (with $p/K\pi$) \rightarrow Simulation group
- Decision whether PID by ToT is sufficient for PANDA by event simulation
- Further optimisation of ToT/dx resolution, range now: 5.5 % 9 % \rightarrow 6 % (?)
- ADC readout ..

Thank you for your attention

May-4th, 2018

Peter Wintz - STT & PID - PANDA PID Workshop