The Barrel DIRC Detector

Panda PID workshop

Roman Dzhygadlo for the PANDA Cherenkov Group

- Barrel DIRC design
- Simulation chain
- Reconstruction methods
- Validation in beam tests
- Summary & outlook

DIRCs in PANDA

Two DIRC detectors for hadronic PID:

Barrel DIRC

German in-kind contribution to PANDA Goal: 3 s.d. π/K separation up to 3.5 GeV/c

Endcap Disc DIRC

Goal: 4 s.d. π/K separation up to 4 GeV/c

2/25

PANDA PID 03.05.18

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

• Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

• Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

• Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.
- Some photons are always totally internally reflected for β≈1 tracks.

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.
- Some photons are always totally internally reflected for β≈1 tracks.
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz").

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector

based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta c = 1/\beta n(\lambda)$.
- Some photons are always totally internally reflected for β≈1 tracks.

- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz").
- Proven to work (BABAR-DIRC).

Barrel DIRC Baseline Design

Based on BABAR DIRC with key improvements

(compact fused silica prisms, spherical lenses)

- 48 radiator bars (16 sectors), synthetic fused silica 17mm (T) x 53mm (W) x 2400mm (L)
- Focusing optics: triplet spherical lens system
- Compact expansion volume: 30cm-deep solid fused silical prisms ~11,000 channels of MCP-PMTs
- Fast FPGA-based photon detection ~100ps per photon timing resolution
- Expected performance (simulation and particle beams): better than 3 s.d. π/K separation for entire acceptance

Barrel DIRC Baseline Design

Based on BABAR DIRC with key improvements

(compact fused silica prisms, spherical lenses)

- 48 radiator bars (16 sectors), synthetic fused silica 17mm (T) x 53mm (W) x 2400mm (L)
- Focusing optics: triplet spherical lens system
- Compact expansion volume: 30cm-deep solid fused silical prisms ~11,000 channels of MCP-PMTs
- Fast FPGA-based photon detection ~100ps per photon timing resolution
- Expected performance (simulation and particle beams): better than 3 s.d. π/K separation for entire acceptance

Conservative design: similar to BABAR DIRC, baseline design for TDR Excellent performance, robust, little sensitivity to backgrounds and timing deterioration

PANDA PID 03.05.18

PANDA PID 03.05.18 Roman Dzhygadlo

PANDA PID 03.05.18

Roman Dzhygadlo

PANDA PID 03.05.18

Roman Dzhygadlo

- good separation in space
- ~4 % of tracks are hit same bar box (using DPM)
- good separation in time
- 90% of 2 tracks in same bar-box still could be separated using delta timing.

- Geometrical reconstruction (BABAR-like)
- Time imaging (Belle II TOP-like)

Look-Up Table creation: store direction at the end of the radiators for each hit pixel

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

one pixel

PANDA PID 03.05.18

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

one pixel

PANDA PID 03.05.18

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

number of photons: 1

one pixel

03.05.18 PANDA PID

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

charged track number of photons: 3 entries [#] 10 8 8.5 0.55 0.75 0.8 0.6 0.65 0.7 0.85 0.9 0.95 $\theta_{\rm c}$ [rad]

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

charged track number of photons: 4 entries [#] 10 8 2 <u></u>б.5 0.8 0.55 0.6 0.65 0.75 0.85 0.9 0.95 0.7 $\theta_{\rm c}$ [rad]

13/25

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

03.05.18 PANDA PID

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

Reconstruction: direction from LUT for hit pixels are combined with charge track direction

03.05.18 PANDA PID

Cherenkov track resolution: $\sigma_{\theta_{\rm C}}^{\rm track}$

Photon yield

Single Photon Cherenkov angle resolution (SPR)

Cherenkov track resolution: $\sigma_{\theta_c}^{\text{track}}$

$$\sqrt{\left(\frac{\sigma_{\theta_{\rm C}}^{\rm photon}}{\sqrt{\rm N_{\rm photons}}}\right)^2 + \left(\sigma^{\rm correlated}\right)^2}_{2-3 \, \rm mrad}$$

PANDA PID 03.05.18

Likelihood calculation:

$$\log \mathcal{L}_h = \sum_{i=1}^N \log \left(\frac{S_h(x_i, y_i, t_i) + B(x_i, y_i, t_i)}{N_e} \right) + \log P_N(N_e)$$

GSI

Baseline design with geometrical reconstruction

→
$$N_{\rm sep} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)}$$

PANDA PID 03.05.18

Analytical PDF (Belle II TOP):

Reconstruction: arrival time of each photon from given track is compared with PDF to calculate time-based likelihood for the photon to originate from a given particle

Full likelihood:

$$\log \mathcal{L}_h = \sum_{i=1}^N \log \left(\frac{S_h(x_i, y_i, t_i) + B(x_i, y_i, t_i)}{N_e} \right) + \log P_N(N_e)$$

 $\pi^{\scriptscriptstyle +}/K$ separation map for Barrel DIRC:

Design meet/exceed PID requirements for entire acceptance range

Fast Simulation/Reconstruction

- Simulation with Cherenkov light is 10-50 times slower
- Output file is bigger (10-30MB per 1k tracks)

- Cherenkov track resolution is parametrized with track momentum and polar angle
- Cherenkov track resolution is used to calculate PID probabilities
- Parametrization is done based on test-beam data and data from different experiments

Beam Test at CERN 2015

- Fused silica prism as expansion volume
- ➢ 5 x 3 array of Planacon MCP-PMTs
- Narrow bar as radiator
- Many different imaging/lens configurations
- Momentum and angle scans
- ~500M triggers during 34 days of data taking

Goal: validation of PID performance of baseline design (narrow bars)

Roman Dzhygadlo

Beam Test at CERN 2015: Narrow Bar

- Goal: validate PANDA Barrel DIRC design and test components for DIRC@EIC
- Narrow bar (17x32x1250 mm³)
- Fused silica prism
- Focusing with 3-layer spherical lens
- ~200 ps time resolution

Geometrical reconstruction:

Hit patterns, proton tag:

Time imaging:

23/25

PANDA PID 03.05.18

Roman Dzhygadlo

Summary and Status

The PANDA Barrel DIRC is a key component of the PANDA PID system

- Simulations predict 3 s.d. π/K separation up to 3.5 GeV/c
- Successfully validated PID performance in particle beams
- Technical Design Report: arXiv:1710.00684
- Implementation in PandaRoot
 - Geometry: all materials are included in realistic way
 - Digitization: all relative effects are included
 - Reconstruction: geometrical and time imaging
 - Open point: T0 determination; analytical PDF for time imaging

Barrel DIRC Timetable

- 2018-2021: Industrial fabrication of fused silica bars and prisms Industrial production of MCP-PMTs
- 2018-2019: Production and QA of readout electronics

DIRC bar with laser

- 2018-2022: Industrial fabrication of bar containers and mechanical support frame, gluing of bars/plates, construction of complete bar boxes
 Detailed scans of all sensors
 Assembly of readout units
- 2023: Installation of mechanical support frame in PANDA, insert bar boxes, mount readout modules

Barrel DIRC Timetable

- 2018-2021: Industrial fabrication of fused silica bars and prisms Industrial production of MCP-PMTs
- 2018-2019: Production and QA of readout electronics

DIRC bar with laser

- 2018-2022: Industrial fabrication of bar containers and mechanical support frame, gluing of bars/plates, construction of complete bar boxes
 Detailed scans of all sensors
 Assembly of readout units
- 2023: Installation of mechanical support frame in PANDA, insert bar boxes, mount readout modules

25/25

Thank you for the attention

Backup slides

55/25

PANDA PID 03.05.18

Key components

Radiators

~30 bars/plates produced by 8 companies (AOS/Okamoto, InSync, Nikon, Zeiss, Zygo; Heraeus, Lytkarino LZOS, Schott Lithotec)

- Several solid fused silica prism prototypes (30° - 45° top angle) built by industry
- Focusing system
 Designed several
 spherical and cylindrical lenses,
 with and without air gap,
 several prototypes built by industry

 Micro-channel Plate Photomultipliers (MCP-PMTs) excellent timing and magnetic field performance used to have issues with rate capability and aging, now solved; sensors of choice for Belle II TOP, LHCb TORCH, PANDA DIRCs

PANDA PID 03.05.18

Roman Dzhygadlo

Readout and Mechanical Design

Readout Electronics

~100ps timing per photon for small MCP-PMT pulses – amplification and bandwith optimization 20MHz average interaction, trigger-less DAQ Current approach: HADES TRBv3 board with PADIWA amplifier/discriminator Near future: DiRICH, integrated backplane,

joint development with HADES/CBM RICH

Mechanical Design

Light-weight and modular, allows staged bar box installation, access to inner detectors Mechanical support elements made from aluminum alloy or carbon fiber (CFRP) Boil-off nitrogen flush for optical surfaces

Beam Test at CERN 2016: Wide Plate

- Goal: validate plate as cost saving option for PANDA Barrel DIRC and DIRC@EIC
- Plate (17x175x1225 mm³)
- Fused silica prism
- Focusing with 2-layer cylindrical lens
- ~200 ps time resolution

Hit patterns, proton tag:

Time imaging:

PANDA PID 03.05.18

Roman Dzhygadlo