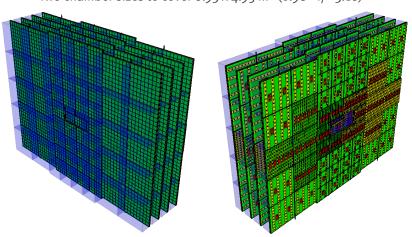


Hit Reconstruction for the CBM-TRD

DPG Frühjahrstagung 2018, Bochum



The CBM-TRD

- ► CBM-TRD in 4.1 m < z < 5.9 m from target
- ► Two chamber sizes to cover 6.93 x 4.95 m² (0.98 $\langle \eta \rangle$ 3.16)

Ing.knowledge

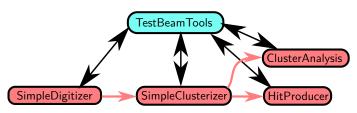
Test Beam Analysis

- The CBM-TRD has gone through extensive
 Test Beam campaigns
- ➤ 2 weeks of data taking were done at DESY 2017
- Analysis for Test-Beam data are usually performed with newly developed components

KnowledgeMijneter

Previous In-Beam Test campaigns

Year	Beamline	Beam / Set-up	Prototypes	Read-out
2006	GSI-SIS18	p, e, π (up to 2 GeV) direct	dual-sided pre-types	ALICE-PASA *
2010	CERN-PS /T10	e, μ , π (up to 5 GeV) direct	pre-types	SPADIC 0.3 * Susibo
2011	CERN-PS /T9	e, μ , π (up to 10 GeV) direct	pre-types	SPADIC 0.3 * Susibo
2012	CERN-PS /T9	e, μ , π (up to 8 GeV) direct	2012-style (57x57 cm²)	SPADIC 0.3 * Susibo
2014	CERN-PS /T9	e, μ , π (up to 6 GeV) direct	2012+2014-style (57x57 cm²)	SPADIC 1.0 SysCore
2015	CERN-SPS /H4	²⁰⁸ Pb (30 AGeV) Pb target	2012-style (57x57 cm²)	SPADIC 1.0 SysCore
2016	CERN-SPS /H4	Pb (13, 30, 150 AGeV) on Pb target	Type 8 (95x95 cm²)	SPADIC 1.1 SysCore
2017	DESY II /TB24	e (14 GeV) direct	Type 8	SPADIC 2.0 AFCK
2017	CERN-GIF++	γ from ¹³⁷ Cs + μ beam	2012-style	SPADIC 2.0 AFCK


*: triggered readout

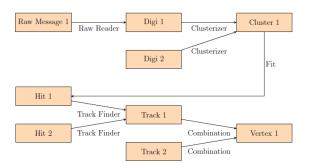
ng.knowledge

Unified Test Beam Analysis

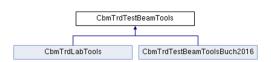
- ► Core Idea: Maximize code reuse and modularity
- Write analysis code with minimal assumptions on parameters
 - ► Number/Type of *Front End Boards* (FEBs)
 - Geometry of Setup
- Use helper classes to abstract parameter handling away
 - ► This framework predates the new parameter handler
- Modularity enables experimental analysis classes, without major modifications

ing.knowledge

Unified Test Beam Analysis


- Provide basic analysis classes for QA
- Provide infrastructure for more specialized analysis
 - Digitization
 - Clusterization
- More specific analysis for a given setup
 - Alignment analysis for DESY data

Architecture of framework


- ► Framework consists of analysis pipeline and helper classes
- Every setup dependent information is queried from helper class

ig.knowledge

Helper classes

- Helper classes are called test beam tools
- ► They contain the **full parametrization** for a specific setup
- Due to inheritance from base class, only differing functions/parameters need to be implemented
 - Different number of detectors
 - Different mapping of SPADIC channel to detector pad
 - Different shaping times

A few tests

- Data recorded at DESY on same MWPC
- ► Here about 40 s of data
- Clusters only filtered based on meta data
- ▶ No filter on the signal shape/charge distribution

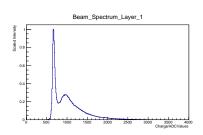


Figure: Without Radiator

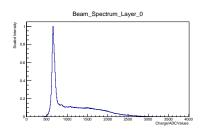


Figure: With Radiator

knowledgeMijneter

A few tests

► Software test: Filter out messages with atypical signal shape

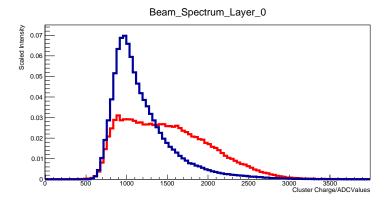


Figure: Blue: Without radiator, Red: With radiator

ng.knowleage

Summary

- Current status of In-Beam Test Analysis has been presented
- Data quality assurance tasks have been implemented and are in use
- Simple digitization and clusterization strategies are implemented and already in use for analysis
- ► TODO:
 - ► New Digitizer to deal with heavy load scenarios
 - New Clusterizer to limit fragmentation
 - Integration into the standard CBM-TRD Software

