THERMAL MANAGEMENT (COOLING) OF THE CBM SILICON TRACKING SYSTEM

Kshitij Agarwal

Eberhard Karls Universität Tübingen, Tübingen, Germany

for the CBM Collaboration

DPG Bochum 18

MATHEMATISCH-Naturwissenschaftliche Fakultät

- 1. Introduction of the CBM Silicon Tracking System
- 2. Motivation & challenges for thermal management of CBM-STS
- 3. Optimisation of thermal interfaces
- 4. Optimisation of cooling plates
- 5. Feedthrough test setup
- 6. Conclusion and outlook

CBM SILICON TRACKING SYSTEM

- CBM aims to explore regions of high-baryonic densities of QCD phase diagram
- Requires detection of rare probes

→ $10^5 - 10^7$ collisions/sec (Au-Au) HK 61.1, 14:00, E. Lavrik → Momentum Resolution $\Delta p/p \approx 1-2\%$

→ High track reconstruction efficiency with pile-up free track point determination

\checkmark

- Silicon Tracking Station \rightarrow Key to CBM Physics
- 8 Tracking Stations :- 896 double-sided micro-strip sensors
- Low Material Budget :- 0.3% 1% X₀ per station
- Radiation tolerance: $\leq 10^{14} n_{eq} \text{ cm}^{-2}$ (1 MeV equivalent)
- ~ 1.8 million read-out channels
- 16000 r/o ASICs "STS-XYTER"

40kW Power Dissipation!!!

STS Group Report

Adverse effects of high-radiation

 \rightarrow Leakage current increases with fluence & temperature

 $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d) \qquad I_L(T) \propto T^2 exp(-1/T)$

 \rightarrow Reduces signal-to-noise ratio (STS req.: S/N > 10)

Shot Noise $\propto \sqrt{I_L}$

- \rightarrow Thermal Runaway
- \rightarrow Reverse annealing of depletion voltage
- Sensor cooling could control these adverse effects

STS sensor temp. -10°C to -5°C at all times

STS Sensor Radiation Damage HK 61.5, 15:15, E. Friske

No cooling pipes inside detector acceptance

- Cooling of sensors (~ 1mW/cm^2) \rightarrow forced convection (N₂ cooling) + thermal enclosure
- Cooling of front-end electronics (~ 40kW) \rightarrow bi-phase CO₂ cooling

OPTIMISATION OF THERMAL INTERFACES

- Thermal Interface Materials (TIMs)
- \rightarrow increases area of contact at microscopic scale
- ightarrow increase overall thermal conductivity

 $(k_{air} = 0.026 \text{ W}/(\text{m}\cdot\text{K}))$

OPTIMISATION OF THERMAL INTERFACES

Thermal Interface Material Properties							
Interface#	TIM	k	d	$R_{\Theta} (d/k)$			
interface#		$W/m \cdot K$	$\mu { m m}$	$m^2 \cdot K/W$			
1	WLK 10 (Thermal Glue)	0.836	100	$1.2 \ge 10^{-4}$			
2-3	KP97 (Thermal Grease)	5.0	30	$6.0 \ge 10^{-6}$			
	QGF-G03 (Graphite Foil)	16.0	125	$7.8 \ge 10^{-6}$			

Exp. – IR Camera + PT100

FEA – Solidworks Thermal Sim.

DPG Bochum 2018

K. Agarwal - Thermal Management of the CBM Silicon Tracking System

OPTIMISATION OF THERMAL INTERFACES

$T = 15^{\circ}C, \dot{Q} = 160W, \dot{m} = 11.1 \text{ g/s}$						
Interface	Interface	Interface	Max.	Fin Temp. (°C)		
#1	#2	#3	Exp.	FEA		
		Grease	29.7	32.0		
Glue	Grease	Foil	29.6	32.0		
		Grease	33.7	32.1		
	Foil	Foil	33.9	32.1		

Key take-aways :

- A more viscous TIM (grease) has a better thermal performance than a relatively rigid TIM (graphite foil, thermal pad)
- Flattening the interfaces (~ 10µm) improves the results substantially
- Good agreement (± 10%) between experiments & simulations

- Bi-Phase CO₂ cooling for STS-FEE (~ 40kW)
- CO₂ heat transfer co-efficient depends on:
- → cooling plate's tube (diameter & length)
 → mass flow of the coolant
 (V)
- \rightarrow targeted amount of heat removal

STS cooling plate's boundary conditions for this study: → Coolant temp. T_{CO2} = -40°C Targeted heat removal = 1300W (~ 8 FEBs)

(√)

Operational Parameters look-up table (Diameters w.r.t. Swagelok VCR connections)

$T = -40^{\circ}C, \dot{Q} = 1300W$						
D (mm)	L (m)	\dot{m} (g/s)				
		At dry-out	25% from	50% from		
		At ary-out	dry-out	dry-out		
4.00	5.50	5.70	8.30	15.30		
4.57	8.50	5.10	7.20	12.10		
6.00	19.50	4.60	6.30	9.80		
			$\Delta T (^{\circ}C)$			
		At dry out	25% from	50% from		
		At dry-out	dry-out	dry-out		
		4.53	4.59	4.69		
		3.67	3.72	3.79		
		2.46	2.44	2.47		

Calculations based on:

L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125

B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209

Z. Zhang, CERN-THESIS-2015-320 (2015)

DPG Bochum 2018

K. Agarwal - Thermal Management of the CBM Sili

Tube Length [m]

FEEDTHROUGH INTEGRATION & TESTS

- All services (HV, LV, data transmission, cooling etc) will be routed through STS front panel
- Total available area = 1.5m²
- Easy cabling & de-cabling
- Maintainence of thermal environment inside STS

 \downarrow High-density thermally-insulating feedthroughs!

	# Cables	U/I	Wire (mm^2)	Incl. shielding /insulation (mm^2)	Total Area (cm^2)
LV (Floating)	4×900	12V/1A	0.25	4	144
HV	2×900	$\pm 250 V/5 mA$	0.10	4	72
GBTx	4×150	12V/1A	0.25	4	24
Opical	256	-	-	4	10
Cooling	80	_	-	bundled + 6cm insulation	40
Controls	200	-	-	4	8

+ Micro Vertex Detector
(MVD)
+ Beam Pipe
Total: 1.5m² (only)

FEEDTHROUGH INTEGRATION & TESTS

1st Dummy

- 108 cables squeezed in 2cm gap!
- Sealed with silicone & filled with PUR foam

FEEDTHROUGH INTEGRATION & TESTS

Next Steps:

- Panel with 9 x EPIC H-DD 42 connectors will be fabricated (area: 20cm x 20cm, #pins: 378)
- Shielded flat-band cables
- Thermal Insulation
- Similar panels with different connectors & configurations will be thermally tested at Universität Tübingen & electrically tested at GSI-Darmstadt
- Could be tested at mSTS

K. Agarwal - Thermal Management of the CBM Silicon Tracking System

SUMMARY AND OUTLOOK

- Challenges of STS Thermal Management:
 - \rightarrow STS sensors temp. < -5°C
 - \rightarrow Removal of FEE power (40kW) by bi-phase CO₂ cooling
 - \rightarrow Operation in thermal enclosure
 - \rightarrow High-density thermally insulating feedthroughs for services
- Progress towards construction of cooling demonstrator:
 - → Thermal interfaces are optimised: Viscous TIM (grease etc.) more efficient
 - \rightarrow Optimised operational parameters for cooling plates available
 - \rightarrow Feedthrough dummys are under construction

SUMMARY AND <u>OUTLOOK</u>

- Sensor cooling: Heat-producing sensor dummies & N₂ cooling system
- FEE cooling:
 - \rightarrow Thermal FEA Simulations with different cooling plate designs + electronics
 - \rightarrow Feasibility of cooling plate's industrial manufacturing
 - \rightarrow Cooling plant commissioning (TRACI XL)
- Environment management: Thermal enclosure & feedthroughs
- Integration: Aim towards start of production of parts by Sept 2018

SUMMARY AND OUTLOOK

- Challenges of STS Thermal Management:
 - \rightarrow STS sensors temp. < -5°C
 - \rightarrow Removal of FEE power (40kW) by bi-phase CO₂ cooling
 - \rightarrow Operation in thermal enclosure
 - \rightarrow High-density thermally insulating feedthroughs for services
- Progress towards construction of cooling demonstrator:
 - \rightarrow Thermal interfaces are optimised: Viscous TIM (grease etc.) more efficient
 - \rightarrow Optimised operational parameters for cooling plates available
 - \rightarrow Feedthrough dummys are under construction
- Sensor cooling: Heat-producing sensor dummies & N₂ cooling system
- FEE cooling:
 - \rightarrow Thermal FEA Simulations with different cooling plate designs + electronics
 - \rightarrow Feasibility of cooling plate's industrial manufacturing
 - \rightarrow Cooling plant commissioning
- Environment management: Thermal enclosure & feedthroughs
- Integration: Aim towards start of production of parts by Sept 2018

THANKS A LOT FOR YOUR ATTENTION!

BACKUP SLIDES

■ Adverse effects of high-radiation → Leakage current increases with fluence & temperature

 $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d) \qquad \frac{I_L(T_2)}{I_L(T_1)} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[-\frac{E_g}{2k}\left(\frac{T_1 - T_2}{T_1 T_2}\right)\right]$ \rightarrow Reduces signal-to-noise ratio (STS req.: S/N > 10) Shot Noise $\propto \sqrt{I_L}$

■ Adverse effects of high-radiation → Leakage current increases with fluence & temperature

 $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d) \qquad I_L(T) \propto T^2 exp(-1/T)$

→ Reduces signal-to-noise ratio (STS req.: S/N > 10) Shot Noise $\propto \sqrt{I_L}$

 \rightarrow Thermal Runaway

• Adverse effects of high-radiation \rightarrow Leakage current increases with fluence & temperature

 $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d) \qquad \frac{I_L(T_2)}{I_L(T_1)} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[-\frac{E_g}{2k}\left(\frac{T_1 - T_2}{T_1 T_2}\right)\right]$

→ Reduces signal-to-noise ratio (STS req.: S/N > 10) Shot Noise $\propto \sqrt{I_L}$

- \rightarrow Thermal Runaway
- \rightarrow Reverse annealing of depletion voltage

Annealing temperature (°C)	-10	0	10	20	40	60	80
Short-term annealing τ_a	306 d	53 d	10 d	55 h	4 h	19 min	2 min
Reverse annealing τ_Y	516 y	61 y	8 y	475 d	17 d	21 h	92 min

F. Hartmann, *Evolution of Silicon Sensor Technology in Particle Physics*, Springer Tracts in Modern Physics 275, DOI 10.1007/978-3-319-64436-3_2

• Adverse effects of high-radiation \rightarrow Leakage current increases with fluence & temperature

 $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d) \qquad \frac{I_L(T_2)}{I_L(T_1)} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[-\frac{E_g}{2k}\left(\frac{T_1 - T_2}{T_1 T_2}\right)\right]$ $\Rightarrow \text{Reduces signal-to-noise ratio (STS req.: S/N > 10)}$ Shot Noise $\propto \sqrt{I_L}$

- \rightarrow Thermal Runaway
- \rightarrow Reverse annealing of depletion voltage
- Sensor cooling could control these adverse effects \rightarrow STS sensor temp. -10°C to -5°C at all times

Calculations based on:

L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125

B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209

Z. Zhang, CERN-THESIS-2015-320 (2015)

DPG Bochum 2018

K. Agarwal - Thermal Management of the CBM Silicon Tracking System

Bi-Phase CO₂ Pressure/Temp. Distribution v/s Tube Length

Calculations based on:

L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125

B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209

Z. Zhang, CERN-THESIS-2015-320 (2015)

DPG Bochum 2018

K. Agarwal - Thermal Management of the CBM Silicon Tracking System