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CBM SILICON TRACKING SYSTEM

 CBM aims to explore regions of high-baryonic densities of QCD phase diagram

 Requires detection of rare probes → 105 – 107 collisions/sec (Au-Au)

→ Momentum Resolution 

→ High track reconstruction efficiency with pile-up free 
track point determination

↓

 Silicon Tracking Station → Key to CBM Physics

 8 Tracking Stations :- 896 double-sided micro-strip sensors

 Low Material Budget :- 0.3% - 1% X0 per station      

 Radiation tolerance: ≤ 1014 neq cm-2 (1 MeV equivalent)        

 ~ 1.8 million read-out channels        

 ~ 16000 r/o ASICs “STS-XYTER” 
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40kW Power 
Dissipation!!!

STS Group Report
HK 61.1, 14:00, E. Lavrik



MOTIVATION & CHALLENGES FOR STS COOLING
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 Adverse effects of high-radiation

→ Leakage current increases with fluence & temperature

→ Reduces signal-to-noise ratio (STS req.: S/N > 10)

→ Thermal Runaway

→ Reverse annealing of depletion voltage

 Sensor cooling could control these adverse effects

STS sensor temp. -10°C to -5°C at all times

STS Sensor Radiation Damage
HK 61.5, 15:15, E. Friske



MOTIVATION & CHALLENGES FOR STS COOLING
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No cooling pipes inside detector acceptance

 Cooling of sensors (~ 1mW/cm2) →  forced convection (N2 cooling) + thermal enclosure

 Cooling of front-end electronics (~ 40kW) → bi-phase CO2 cooling

Thermal 
Insulation Box

<-5°C 
@sensors

FEE (40kW) Cooling
Plate



OPTIMISATION OF THERMAL INTERFACES

 Thermal Interface Materials (TIMs) → increases area of contact at microscopic scale

→ increase overall thermal conductivity

(kair = 0.026 W/(m∙K) )

Interface 1: (Fixed) 
Aluminium Nitride – ASIC (Resistors)

Interface 2: (Removable)
Aluminium Nitride – Aluminium Fin

Interface 3: (Removable)
FEE box – Cooling Plate 5



OPTIMISATION OF THERMAL INTERFACES
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H2O inlet: 15°C @ 40lt/hr

HTC: 750 W/m²K
Air Convection: 10 W/m²K
Radiation included

Power Dissipated: 160W

Exp. – IR Camera + PT100 FEA – Solidworks Thermal Sim.



OPTIMISATION OF THERMAL INTERFACES

DPG Bochum 2018 K. Agarwal - Thermal Management of the CBM Silicon Tracking System 7

H2O inlet: 15°C @ 40lt/hr

HTC: 750 W/m²K
Air Convection: 10 W/m²K
Radiation included

Power Dissipated: 160W

Key take-aways : 

 A more viscous TIM (grease) has a better thermal 
performance than a relatively rigid TIM (graphite foil, 
thermal pad)

 Flattening the interfaces (~ 10µm) improves the results 
substantially

 Good agreement (± 10%) between experiments & 
simulations
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OPTIMISATION OF COOLING PLATE

 Bi-Phase CO2 cooling for STS-FEE (~ 40kW)

 CO2 heat transfer co-efficient depends on: →  cooling plate's tube (diameter & length) (√)

→ mass flow of the coolant (√)

→ targeted amount of heat removal (√)

 STS cooling plate's boundary conditions for this study:    →
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Inlet Temperature - FIXED

Outlet Pressure - FIXED

Coolant temp. TCO2 = -40°C
Targeted heat removal = 1300W (~ 8 FEBs)



OPTIMISATION OF COOLING PLATE
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Outlet vapor quality SHOULD NOT reach dry-out!
Solution: Higher mass flows

Vapor Quality: (= 0: saturated liq.)
(= 1: saturated vap.)

Dry-out zone: Tube′s inner surface is no longer in 
contact with liquid coolant 

↓
Much lower Heat Transfer Co-eff

↓
Higher tube wall temperature

↓
Higher ΔT (Local temp. diff. between 
fluid and tube wall in tube) 
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Mass defined at 50% 
from  dry-out quality

OPTIMISATION OF COOLING PLATE

Maximisation of:

Bi-Phase CO2 Pressure/Temp. Distribution v/s Tube Length



OPTIMISATION OF COOLING PLATE
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Operational Parameters look-up table
(Diameters w.r.t. Swagelok VCR connections)

Calculations based on:
L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125
B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209
Z. Zhang, CERN-THESIS-2015-320 (2015)
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FEEDTHROUGH INTEGRATION & TESTS

 All services (HV, LV, data transmission, cooling etc) 
will be routed through STS front panel

 Total available area = 1.5m²

 Easy cabling & de-cabling

 Maintainence of thermal environment inside STS

↓

2300

+ Micro Vertex Detector 
(MVD)
+ Beam Pipe

Total: 1.5m² (only)

High-density thermally-insulating feedthroughs!
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FEEDTHROUGH INTEGRATION & TESTS
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1st Dummy
 108 cables squeezed in 2cm gap!
 Sealed with silicone & filled with PUR foam

25°C
50% RH

-10°C
1% RH
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FEEDTHROUGH INTEGRATION & TESTS
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25°C
50% RH

Next Steps:
 Panel with 9 x EPIC H-DD 42 connectors will 

be fabricated (area: 20cm x 20cm, #pins: 378)

 Shielded flat-band cables

 Thermal Insulation

 Similar panels with different connectors & 
configurations will be thermally tested at 
Universität Tübingen & electrically tested at 
GSI-Darmstadt

 Could be tested at mSTS
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-10°C
1% RH



SUMMARY AND OUTLOOK

 Challenges of STS Thermal Management:

→ STS sensors temp. < -5°C

→ Removal of FEE power (40kW) by bi-phase CO2 cooling

→ Operation in thermal enclosure

→ High-density thermally insulating feedthroughs for services

 Progress towards construction of cooling demonstrator:

→ Thermal interfaces are optimised: Viscous TIM (grease etc.) more efficient

→ Optimised operational parameters for cooling plates available

→ Feedthrough dummys are under construction

DPG Bochum 2018 K. Agarwal - Thermal Management of the CBM Silicon Tracking System 15



SUMMARY AND OUTLOOK

 Sensor cooling: Heat-producing sensor dummies & N2 cooling system

 FEE cooling:

→ Thermal FEA Simulations with different cooling plate designs + electronics 

→ Feasibility of cooling plate‘s industrial manufacturing

→ Cooling plant commissioning (TRACI – XL)

 Environment management: Thermal enclosure & feedthroughs

 Integration: Aim towards start of production of parts by Sept 2018
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THANKS A LOT 
FOR YOUR 
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MOTIVATION & CHALLENGES FOR STS COOLING

 Adverse effects of high-radiation → Leakage current increases with fluence & temperature

→ Reduces signal-to-noise ratio (STS req.: S/N > 10)
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F. Hartmann, Evolution of Silicon Sensor Technology in Particle Physics,
Springer Tracts in Modern Physics 275, DOI 10.1007/978-3-319-64436-3_2



MOTIVATION & CHALLENGES FOR STS COOLING
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OPTIMISATION OF COOLING PLATE
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Bi-Phase CO2 Flow Pattern Map

At dry-out quality

25% from  dry-out quality

50% from  dry-out quality

Calculations based on:
L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125
B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209
Z. Zhang, CERN-THESIS-2015-320 (2015)



OPTIMISATION OF COOLING PLATE
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Bi-Phase CO2 Pressure/Temp. Distribution v/s Tube Length

Calculations based on:
L. Cheng et al., Int. J. Heat Mass Transfer 51 (2006), p.111 & p.125
B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209
Z. Zhang, CERN-THESIS-2015-320 (2015)

Mass defined at 50% from  
dry-out quality


