Large scale characterization and quality assurance tests for CALICE AHCAL "engineering prototype"

Y. Munwes on Behalf of CALICE collaboration

Kirchhoff-institute for physics, University of Heidelberg

ICASIPM

June 12, 2018

June 12, 2018

High Granular Calorimeters

- International Linear Collider (ILC):
 - Under discussion in Japan
 - $-\sqrt{s}$ =250-500 GeV, up-gradable to 1 TeV
 - 31 km long, superconductive RF cavities
- High granular calorimeters:
 - Motivated by requirements from precision physics programs at future lepton colliders
 - Prerequisite for Particle Flow reconstruction
- Particle Flow Reconstruction:
 - Aim to improve the jet energy resolution
 - Connecting information from all sub-detectors
 - Charged particles measured in Tracker
 - Photons measured in Electromagnetic Calorimeter (ECAL)
 - Neutral hadrons measured in Hadronic Calorimeter (HCAL)
 - Separate energy depositions from close-by particles: high granularity is essential

Scintillator based hadronic calorimeter (AHCAL)

 Sandwich calorimeter based on scintillator tiles (3 \times 3 cm^2) readout using SiPMs

- Fully integrated electronics
- HCAL Base Unit (HBU): $36 \times 36 \ cm^2$, 144 channels, 4 ASICS
- High granularity: 8M channels
- Technological prototype: demonstrate scalability to full detector

Old tile design

- physical prototype since 2006
- Channel Design (2014):
 - Complex tile design
 - Individual tile warpping (laser cutted, semi-automatic assembly)
 - Plastic scinitllator machined manually
 - SiPMs soldered to pins and glued to kapton
 - Sensor glued to Tile

• QA:

- Test cell (Tile+SiPM) before assembly on HBU
- Full SiPM characterization
- Light yield estimation for fixed over voltage
- Production flow:
 - SiPM soldered and glued to Kapton
 - Scintillator machining (manual)
 - Tile wrapping
 - Sensor glued to tile (manually)
 - QA test
 - Detector solder to HBU (manually)

Old Tile tester

- Tester plate:
 - Can hold up to 220 Tiles
 - Dedicated connectors for the SiPMs pins
 - Dedicated holes for laser input
- Tester head:
 - Assembled on XYZ stage
 - Include 12 fibers (measure 12 channels simultaneously)
 - Include integrated electronic (Klaus ASIC)
 - Connection to SiPMs with spring loaded pins
 - HV supply
- Output:
 - Breakdown voltage
 - LY at a fixed over voltage
 - DCR

Tester plate

moving stage with tester head

Engineering prototype - new design

- Engineering prototype goals:
 - Large scale 24,000 channels
 - Scalability to full detector
 - Automatized production!
 - Improvement in uniformity and performance with compare to the physics prototype
- New generation of industrial SiPM:
 - Dramatically reduced DCR
 - Increase PDE
 - Better signal-to-noise ratio
 - After-pulses and inter-pixel cross-talk rates reduced
 - Noise rate decreases quickly with threshold leads to more stable operation
 - Excellent uniformity (operating voltage, gain) \rightarrow simplified calibration
 - High over-voltage operation \rightarrow reduced temperature sensitivity

Engineering prototype - new design

- Engineering prototype goals:
 - Large scale 24,000 channels
 - Scalability to full detector
 - Automatized production!
 - Improvement in uniformity and performance with compare to the physics prototype
- New generation of industrial SiPM:
 - Dramatically reduced DCR
 - Increase PDE
 - Better signal-to-noise ratio
 - After-pulses and inter-pixel cross-talk rates reduced
 - Noise rate decreases quickly with threshold leads to more stable operation
 - Excellent uniformity (operating voltage, gain) \rightarrow simplified calibration
 - High over-voltage operation \rightarrow reduced temperature sensitivity

Allow re-design of tile-SiPM concept

rngger (p.

- ullet SMD SiPM o directly soldered on the HBU
- \bullet Simpler tile design \to allow injecting moulding (tile/min, Lebedev Physics Institute)
- Tile wrapping using fully automatic machine (Uni. Hamburg)
- Tile assembly using pick and place machine (Uni. Mainz)

Injected mould tiles

Automatic placing of tiles

- ullet SMD SiPM o directly soldered on the HBU
- \bullet Simpler tile design \to allow injecting moulding (tile/min, Lebedev Physics Institute)
- Tile wrapping using fully automatic machine (Uni. Hamburg)
- Tile assembly using pick and place machine (Uni. Mainz)

QA tests in two steps

- SiPM QA before soldering
- Test tile+SiPM after assembly

Injected mould tiles

Automatic placing of tiles

- ullet SMD SiPM o directly soldered on the HBU
- Simpler tile design \rightarrow allow injecting moulding (tile/min, Lebedev Physics Institute)
- Tile wrapping using fully automatic machine (Uni. Hamburg)
- Tile assembly using pick and place machine (Uni. Mainz)

QA tests in two steps

- SiPM QA before soldering
- Test tile+SiPM after assembly (Mainz University)

Stable temperature!

Cosmic setup

- ullet SMD SiPM o directly soldered on the HBU
- Simpler tile design \rightarrow allow injecting moulding (tile/min, Lebedev Physics Institute)
- Tile wrapping using fully automatic machine (Uni. Hamburg)
- Tile assembly using pick and place machine (Uni. Mainz)

QA tests in two steps

- SiPM QA before soldering (Heidelberg University)
- Test Tile+SiPM after assembly

Stable temperature!

Cosmic setup

SiPM QA requirements

- Setup requirements:
 - Readout SMD SiPM without soldering
 - Scalable design
 - Fast testing
- SiPM requirements (@25°C, 5 V OV):
 - $-\sim$ 2700 pixels, pixel size 25 μm
 - DCR < 500 kHz
 - Cross-talk < 3%
 - PDE (@420 nm) > 20%
 - Gain $> 3 \times 10^5$
 - dV/dT < 1% of excess bias voltage ($\sim 50 \text{ mV/k}$)
 - Breakdown voltage min-max spread 200 mV within a batch
 - For quality assurance: test a small sample (4% from each batch)
- Accept maximum 1 outlier from each batch of 600 Sensors

SiPM QA setup

- System components:
 - Laser head with 12 optical fibers
 - Base plate:
 - Up to 144 SMD SiPMs
 - RO 12 KlauS2 ASICs
 - Multiplexing of Klasu2 output signals to 12 channels ADC
 - Fiber/SiPMs spacing compatible to HBU
- Advantages:
 - Measure 48 SiPMs in ∼8 min
 - Can be used both for SMD SiPM QA or on equipped HBU
 - Modular can be easily scaled up the no. of channels
- Disadvantage:
 - Manually placed the SiPMs
 - Need to take SiPMs out of the sealed tape

SMD SiPM schematic view

Single base plate

- 24 SiPMs
- Multiplex PCB
- 2 Klaus ASICs
- Current prototype have 2 module (up to 48 SiPMs)
- The design is modular and can be scale up if needed for mass production

SMD SiPM base plate

Measurement procedure

Measurement:

- Using low intensity light spectra
- The setup is inside an oven with constant temperature of 25°C
- \bullet Measure the SPS spectrum for voltage range of 1 V to 7 V above breakdown (Hamamatsu datasheet) at step size of 0.1 V
- For the sample measured during night re-measure for temperatures (10,15,20,25,30,35,40°C)

Analysis:

- Extract from each SPS spectrum the gain using FFT
- Extract the breakdown voltage for each temperature and SiPM from linear fit of gain vs. voltage
- Estimate the DCR from SPS using Poisson statistics:

$$DCR = -ln(\frac{N_0}{N_{tot}}/\Delta t) \qquad (1)$$

- Estimate CT upper limit from the DCR spectrum
- extract for each SiPM the temperature coefficient from linear fit of the breakdown voltage vs. temperature (for available samples)
- * the gain is measured in arbitrary units $\rightarrow 13 \sim 3 \times 10^5$ (the requirement)

Example results

breakdown voltage min-max spread xt @ vbr_mean+5

Cross-talk spread

DCR spread

Temperature coefficient spread

140 DCR[Hz]

Results

- DCR < 500 KHz OK!
- Gain $> 3 \times 10^5$ **OK!**
- dV/dT < 1% OK!
- V_{bd} spread min-max within a batch 200 mV OK! (only 4 outlier)
- Cross-talk < 3% OK
 - include some after-pluses
 - due to much lower DCR can tolerate increase in CT
- ullet PDE (@420 nm) > 20% didn't measure yet (difficult without soldering)

Issues

- Temperature control
- Light tight
- Non-linearity
 - Systematic in all
 - Residual < 10 mV
 - Possible voltage drop
- Not biasing the spread

Example Voltage Vs. Gain full range

Example Voltage Vs. Gain small range

Summary

- A large scale engineering prototype was build this year (24k channels)
- New test benches for QA of SMD SiPMs were designed
- Test benches are easily scaled up
- Fast SiPM characterization (\sim 10 sec per SiPM)
- All SiPM batches passed the requirements
- Good uniformity in SiPM parameters observed
 - Will allow to test less SiPM in the future
- Small non linearity in gain curves didn't bias the spread measurement
- For large scale version, an active cooling will be designed

KIRCHHOFF-INSTITUTE FOR PHYSICS

backup Slides

PDE setup

