Characterisation of radiation-damaged SiPMs

S. Cerioli, E. Garutti, R. Klanner, D. Lomidze, S. Martens,

J. Schwandt, M. Zvolsky

Hamburg University

- 1. Aims
- 2. SiPMs + measurements
- 3. Results

3.1 C-V: Electrical parameters and doping profile

- 3.2 I_{dark} : V_{bd} , DCR
- 3.3 PH_{dark}: DCR
- 3.4 PH_{light}: photo-detection
- 4. Conclusions + next steps

Aims + SiPMs investigated

Aim: Develop and test methods to characterise hadron-damaged SiPMs

- \rightarrow Demonstrate them on a specific SiPM \rightarrow which is the best method?
- \rightarrow Which parameters change with fluence? \rightarrow physics of damage \rightarrow Improvements?
- \rightarrow Quantify optimal operating conditions + pulse shaping for a given task

SiPM: KETEK MP15^{*)} with 4384 pixels 15x15 μ m²

n-irradiated at JSI (reactor) to 10⁹, 10¹¹, 5·10¹¹, 10¹², 5·10¹², 10¹³, 5·10¹³, 5·10¹⁴ cm⁻²

- Depth ampli-region ~ 1µm
- $~V_{bd}\approx 27.5~V$ at 20°C
- $V_{off} \approx V_{bd} 850 \text{ mV}$
- R_q poly-Si

^{*)} SiPM well studied @ UHH (RK. et al., NIM-A 854 (2016) 70)

Measurements

C/G-V: V = 0...26.5V, *f* = 100 Hz...2 MHz $T = -30^{\circ}C$ and $+20^{\circ}C$

Measurements

Current transients: V = 27.7...30.5V, T = $-30^{\circ}C \rightarrow PH_{dark}$ and PH_{light} -spectra

ICASP - Schwetzingen --- Robert Klanner --- 11-15.6.2018

Parameters and formulae for analysis

V_{bd} versus V_{off}

From PH-fits: $Gain(V) \rightarrow find \ Gain(V) = dGain/dV \cdot (V - V_{off}) \rightarrow with \ dGain/dV = const$ \rightarrow straight line describes $Gain(V) \rightarrow V_{off}$ from extrapolation to Gain = 1 ($f_{gate} = 1$)

Difference: $V_{bd} - V_{off} \approx 850 \text{ mV}$ to be taken into account for analysis for further analysis assume no dependence of $V_{bd} - V_{off}$ on Φ $dGain/dV \approx \text{compatible with } C_{pix}/q_0$

C-V measurements and C_{pix} , R_q , C_q

Dependence of C_{pix} and R_q on T and Φ (neutron fluence):

SiPM model

- Upper limit C_q < 5 fF (~1 fF-pulse shape)

- Significant differences for SiPM samples

 C_{pix} not influenced by T and Φ R_q increases with decreasing T (poly-Si) R_q appears to increase for $\Phi > 10^{13}$ cm⁻²

C-V measurements: Doping and E-field

Doping profile $N_d(x)$ and E-field E(x) assuming 1-D abrupt p⁺n-junction:

$$x(V) = \frac{\varepsilon_0 \varepsilon_{Si} A}{C(V)} \quad N_d(x) = \frac{2}{q_0 \varepsilon_0 \varepsilon_{Si} A^2} \cdot \frac{1}{\mathrm{d}(1/C^2)/\mathrm{d}V} \quad E(x) = \int_{x_{max}}^x \frac{q_0 N_d(x)}{\varepsilon_0 \varepsilon_{Si}} \,\mathrm{d}x \quad A = N_{pix} \cdot pitch^2$$

Minor decrease of N_d for $\Phi = 5.10^{14}$ cm⁻² (expected from radiation-induced donor removal)

Breakdown voltage V_{bd}

 V_{bd} using max(*ILD*) with $ILD = (d \ln |I|/dV)^{-1}$

Only at +20°C I_{dark} measured for all SiPMs for $\Phi = 0 \rightarrow$ variations observed \rightarrow difference $V_{bd}(\Phi) - V_{bd}(\Phi = 0)$ significant only at 5.10¹⁴ cm⁻²

> $V_{bd} \approx \text{const.}$ up to $\approx 5.10^{13} \text{ cm}^{-2}$ Increase by $\approx 300 \text{ mV}$ at $5.10^{14} \text{ cm}^{-2}$

Dark current vs. fluence and voltage

Does $I_{dark}(V - V_{bd})$ scale with Φ ? $\rightarrow R_{dark} = I_{dark}(\Phi)/I_{dark}(10^{11})$ vs. $V - V_{bd}$

→ $V < V_{bd}$ → R_{dark} ≈ const; for $V > V_{bd}$ increase by factor up to 2 with VModel: $I_{dark} = DCR \cdot (C_{pix} \cdot (V - V_{off})) \cdot EQF$ → x2 by EQF and gain implausible → assume change due to DCR → "trap assisted high-field generation"?

 $I_{dark}(\Phi)/I_{dark}(10^{11})$ increases with $V - V_{hd}$: higher $\Phi \rightarrow$ faster increase

DCR vs. fluence and voltage

Model: $I_{dark} = DCR \cdot (C_{pix} \cdot (V - V_{off})) \cdot EQF$ assume $C_{pix} = 18$ fF

Comment: Estimate fraction of busy pixels (occupancy) $\approx (DCR \cdot \tau)/N_{pix} \approx 0.5$ for $DCR = 10^{11} \text{ s}^{-1}$, $\tau = 20 \text{ ns}$, $N_{pix} = 4384$

 $I_{dark}(\Phi, V)$ allows estimation of $DCR(\Phi, V)$ \rightarrow V-dependence of DCR very different after irradiation! \rightarrow Exponential increase for $V - V_{bd} > 2 V + saturation at high <math>\Phi$

PH_{dark} – irradiated SiPM

 $Var_{dark}(t_{gate})$ vs. Φ at -30°C:

1 pulse $(e^{-t/\tau})/\tau$ per sec in random gate t_{gate} : $var_1 = t_{gate} - \tau (1 - e^{-t_{gate}/\tau})$

 \rightarrow Solid curves, which describe data ($\tau \approx$ 20 ns)

 t_{gate} – dependence of $Var \rightarrow$ described by model for $10^{11} < \Phi < 5.10^{12} \, \mathrm{cm}^{-2}$ Var allows to estimate τ and DCR (if no strong saturation effects)

DCR-results agree within \approx 30 % with results from I_{dark} *Var*-method more complicated and range of validity limited Differences may help to better understand rad.damage effects on SiPMs ???

Comparison of Var and I_{dark} method

Comparison:

Typical agreement O(30%), however also larger differences \rightarrow Detailed comparison + understanding of differences still to be done

PH_{light}: Gain determination

PH_{light}[:] µ-determination

Can we determine μ ?

(μ = no. of photons initiating a Geiger discharge)

Yes, $V < 29.5 \text{ V} + \text{up to } \sim 10^{12} \text{ cm}^{-2}$;

No for higher fluences – saturation!

PH_{light}: μ (∝ PDE) photo-detection

 $\Phi < 10^{13}$: PDE essentially unaffected by irradiation $\Phi = 10^{13} - 5 \cdot 10^{13}$: irradiation affects PDE (low $V - V_{bd}$ still ok) $\Phi = 5 \cdot 10^{14}$: SiPM not a useful photo-detector "all pixels occupied" $(\Rightarrow , t_{gate}$ " optimisation under way)

Conclusions + next steps

- 1. C-V, I_{dark} , PH_{dark} , PH_{light} measured at -30°C for $\Phi = 0 \dots 5.10^{14} \text{ n/cm}^2$
- 2. Formulae presented, which relate SiPM parameters to measured quantities
- 3. C_{pix} and R_{q} little affected by Φ
- 4. $I_{dark} \rightarrow DCR \rightarrow increase with V and <math>\Phi \rightarrow high DC pixel occupancy for <math>\Phi > 10^{13}$ $\rightarrow expect a significant PDE reduction$
- 5. $PH_{dark} \rightarrow DCR$ from variance $\rightarrow \sim consistent$ with DCR from I_{dark}
- 6. $PH_{light} \rightarrow different$ methods indicate Gain not affected by Φ
- 7. $PH_{light} \rightarrow approximate V- and \Phi-dependence of "relative" PDE (µ) \rightarrow for \Phi=5.10^{14} cm^{-2} and -30°C SiPM investigated not a useful photo-detector$

Next steps:

- 1. DCR-"PDE" as a function of (Φ, V, t_{gate}) + noise vs. threshold as function of (Φ, V, t_{gate})
- 2. Optimisation of pulse-shaping \rightarrow how much can one gain?
- 3. Include fast component from C_q in analysis
- 4. Implement saturation effects due to dark counts + photons
- 5. Implement what we learn in Schwetzingen

Most methods of SiPM characterisation fail after high Φ irradiation ??? Can we find + agree on the most suitable methods ???