

Experimental SiPM parameter characterization from avalanche triggering probabilities

G. Gallina, J.Kroeger , P. Giampa, <u>F. Retière</u>, M. Ward, G. Zhang, L. Doria

Electron vs hole triggered avalanches

Adding timing information

Parameterizing the probability of triggering avalanches

- Assumption 1: no depth dependence of Pe and Ph
 - I.e. avalanche region is small compare to collection region
- Assumption 2: Relate Pe and Ph using McIntyre formalism $\int_{-\alpha_h P_p}^{\infty} dx$
 - 1-Ph = (1-Pe)^k* with $k^* = \frac{b_0}{\int_{-\infty}^{\infty} \alpha_e P_p \ dx}$
 - And $k^* = (\alpha V_{ov})^{\beta}$ with a and b free par
- Assumption 3: Pe ~ probability of creating at least 1 extra e-h pair:
 - Pe = 1- $\exp(-\alpha_e \Delta_s) = 1 \exp[-A \exp(-B/V_{ov})]$
 - With A and B free parameters

Measuring probability of triggering avalanche

- Hamamatsu VUV4
- Measure <PE> vs V_{ov} for 5 different wavelength
 <PE> = φ PDE_{sat} [fe Pe(V_{ov}) + (1-fe) Ph(V_{ov})]
 C = φ PDE_{sat} floats independently
 At 180 and 375nm fe=1 therefore fix

 - At 180 and 375nm fe=1 therefore fix Pe parameters (A and B)
 - Then at other 3 wavelengths floats fe α , and β

Measuring probability of triggering avalanche

 Now use these functions to investigate DN, AP and XT

TRIUMF characterization setup

- Light-tight box
- Waveform analysis
- Wavelengths analyzed:
 - 180 nm (Xe flash lamp)
 - 378 nm (Hamamatsu laser)
 - 444 nm (Hamamatsu laser)
 - 782 nm (Hamamatsu laser)
 - 1060 nm (LED)
- The Xe flash lamp:
 - filtered by 1 fixed + 3 movable VUV filters
 - monitored by photodiode

• Objective: Find a model for DN, AP, CT and IV

Measuring after-pulsing and dark noise with time to next pulse technique

-110 C data

Time to next pulse to rate method

https://www.sciencedirect.com/science/article/pii/S016890021730921X?via%3Dihub NIM A vol 875 (2017) p. 87

Dark Noise Rate

 $R(V_{ov}) = R0*[fe_{DN}*Pe(V_{ov}) + (1-fe_{DN})*Ph(V_{ov})]$

Assumption: R0 does not depend on V_{ov}

Dark Noise Rate: Parameters

R(Vov) = R0*[feDN*Pe(Vov) + (1-feDN)*Ph(Vov)]

- Vov: overvoltage
- RO: rate of thermally generated electron-hole pairs
- feDN: fraction of electron-driven avalanches
- Pe: avalanche triggering prob. for electrons
- Ph: avalanche triggering probability for holes

Conclusion (for Hamamatsu VUV4):

- feDN < 0.1
- Dark noise dominated by holes

Afterpulsing --> mean number of AP per pulse

- AP = $(C/e)*V_{ov}*P_ap*[feAP*Pe(V_{ov}) + (1-feAP)*Ph(V_{ov})]$
- Assumption: AP scale with the gain
- C: capacitance
- e: electron charge
- P_ap: probability to produce an afterpulse
- feAP: fraction of electron-driven avalanches
- Pe: avalanche triggering prob. for electrons
- Ph: avalanche triggering prob. for holes

Afterpulsing: Parameters

- AP = A*Vov*[Pe*feAP + Ph*(1-feAP)]
 - Pe: avalanche triggering prob. for electrons
 - Ph: avalanche triggering probability for holes
 - A: absorbs afterpulsing probability and capacitance
 - feAP: fraction of electron-driven avalanches
- Conclusion (for Hamamatsu VUV4):
 - feAP < 0.1
 - afterpulsing dominated by holes

Direct Crosstalk

Crosstalk is estimated by:

Estimated as:

$$crosstalk\ probability = \frac{number\ of\ pulses\ with\ (charge > 1.5\ P.E.)}{number\ of\ pulses\ with\ (charge > 0.5\ P.E.)}$$

$$CT = (C/e)*P_ct*Vov*[Pe*feXT + Ph*(1-feXT)]$$

- C: capacitance
- e: electron charge
- Vov: overvoltage
- P_ct: probability to produce optical photon
- feXT: fraction of electron-driven avalanches
- Pe: avalanche triggering prob. for electrons
- Ph: avalanche triggering probability for holes

Direct Crosstalk: Parameters

- CT = kxt*Vov*[Pe*feXT + Ph*(1-feXT)]
- kxt: absorbs probability to produce optical photon, electron charge, and capacitance
- feXT: fraction of electron-driven avalanches
- Pe: avalanche triggering prob. for electrons
- Ph: avalanche triggering probability for holes
- Conclusion (for Hamamatsu VUV4):
 - feXT < 0.2
 - crosstalk dominated by holes

Now with DN, AP, CT can we predict and fit the IV curve in reverse bias? Yes!

IV curves – reverse bias

Gain, linear with Vov

 $I = C*Vov*{RO(T)*[feDN*Pe(Vov)+(1-feDN)*Ph(Vov)]}$ * [1 + q*AP(Vov)/(1-q*AP(Vov)) + CT(Vov)] + IO

\ Geometrical series

Only two parameters floating!

Higher order mixed terms of afterpulsing and crosstalk neglected!

Floating parameters:

- C: capacitance
- q: average fraction of charge carried by afterpulse

All other parameters fixed by previous analysis!

- R0: rate of thermally generated electron-hole pairs
- feDN: fraction of electron-driven avalanches
- Nap: average number of afterpulses per pulse
- Nxt: average number of crosstalk events per pulse
- I0: leakage current
- Pe(Vov): avalanche triggering prob. for electrons
- Ph(Vov): avalanche triggering probability for holes
- I0: leakage current

Current troubles with IV

At high OV:

 Afterpulsing is overestimated Run-away not modelled properly

At low temperatures:

- General shape looks different
- Problem with the data or additional processes must be considered?

IV curves – forward bias

- Measure resistance fitting high current part
- Trying to measure temperature fitting full spectrum
 - V at constant I is also an option

Summary. Model reasonably succesful

- Extracting probability of triggering avalanche from overvoltage dependence of PDE
- Applying to DN, AP and XT
 - Good overall agreement
 - Parameters seem to make sense
- Putting together all parameters for predicting IV curve

- End goal is to extract all parameters from IV
 - But need robust model
- Address several issues
 - Runaway region (divergence)
 - Transition from linear to Geiger mode
- Use two-photon ionization for better separating e- and h avalanches

Outlook: "next generation" characterization setup

Interested in a workshop to discuss this topic

The end

IV curves – reverse bias Parameters

I = C*Vov*{R0*[feDN*Pe(Vov)+(1-feDN)*Ph(Vov)]}
 * [1 + q*Nap(Vov)/(1-q*Nap(Vov)) + Nxt(Vov)] + I0

****geometrical series

- C: capacitance
- Vov: overvoltage
- RO: rate of thermally generated electron-hole pairs
- Pe: avalanche triggering prob. for electrons
- Ph: avalanche triggering probability for holes
- feDN: fraction of electron-driven avalanches
- q: average fraction of charge carried by afterpulse
- Nap: average number of afterpulses per pulse
- Nxt: average number of crosstalk events per pulse
- 10: leakage current

