

A. Hahn, D. Fink, D. Mazin, R. Mirzoyan, M. Teshima, A. Dettlaff Prototyping of Large-size Silicon Photomultiplier Based Detector Modules in IACTs

- Canary island of La Palma
- 2200 m above see level ۲
- Two imaging atmospheric Cherenkov telescopes (IACTs)
- Each camera equipped with 1039 PMTs
- Up to 7 pixels partitioned in 169 clusters plus 6 open corner locations

[2]

MAX-PLANCK-GESELLSCHAFT

Motivation

- SiPMs are competing with PMTs in terms of detection efficiency
- No HV necessary
- No ageing
- Potentially SiPMs can be operated during moon time similar to MAGIC PMT cameras
- Drawbacks: temperature dependence, high background rate due to broad wavelength sensitivity
- **Goal:** Compare performance of PMT and SiPM based detectors during real telescope operation

- Excelitas C30742-66 SiPM
- Three groups (2-3-2) of Excelitas 6x6 mm² SiPMs with same breakdown voltage
- Single, summed output of all SiPMs
- Only one high voltage per cluster
- One offset voltage per group used to disable the pixel (star in FOV), adjust gain
- One temperature sensor next to sensors
- Dedicated light guide design
- 31 % dead area

MAX-PLANCK-GESELLSCHAFT

Second Generation Design

Using Hamamatsu and SensL SiPMs
 ⇒ comparison of three major suppliers

- Increased active area to 9 SiPMs/pixel (< 10 % dead area)
- Similar electronics
- Optimized heat flow using Aluminium core PCBs
- Lower breakdown voltage

Sensor type	Breakdown voltage
Excelitas C30742-66	~ 95 V
Hamamatsu S13360-6075VS	~ 50 V
SensL MicroFJ-60035-TSV	~ 30 V

Alexander Hahn

IC on the Advancement of SiPM 12.06.2018

Installation of SiPM clusters

Installed

1 cluster Excelitas (since 2015)
1 cluster Hamamatsu (since 2017)
1 cluster SensL (since 2017)

Installation of SiPM clusters

- Installed
 - 1 cluster Excelitas (since 2015)
 - 1 cluster Hamamatsu (since 2017)
 - 1 cluster SensL (since 2017)
- Integrated to standard readout and data taking
- Operated in parasitic trigger mode on events triggering the inner camera region

Excelitas

Calibration

Two methods considered

Single-photoelectron spectrum

 Using position and FWHM of charge distribution

Calibration Single phe-spectrum

- 100 kEvents @ 300Hz with closed lids
 - \Rightarrow Pedestal / dark count events
- Selection of good events
- Fitting the single pe-spectrum to obtain the gain
- Integrate or fit original data for cross-talk estimation

F-Factor Cross-talk

- Calibration via F-Factor method (like PMTs)
- Cross-talk (p) defines F-Factor of SiPMs

$$F = 1 + p + \frac{3}{2}p + O(p^3)$$

- Measured cross-talk in lab
- Read dark current during pedestal run ⇒ calculate F-Factor
- Higher order terms in SiPM F-Factor lead to a higher uncertainty in converted phe wrt. PMT conversion

[3, 4]

Performance

- Calibration light pulses illuminating the camera
- Fixed frequency (25 Hz)
- Fixed wavelength (355 nm)
- Fixed light content
- Used for PMT calibration
- Used for comparing detection efficiencies of SiPMs and PMTs

- Calibrated using phe-spectrum
- Dead area of pixel, PDE(λ) \Rightarrow expect ~ 32 phe
- Number of phe is in expected range

Hamamatsu and SensL clusters expected to perform as good as current MAGIC PMTs in terms of pixel PDE

MAX-PLANCK-GESELLSCHAFT

Performance Gen. 2 Hamamatsu

- Calibrated using phe-spectrum
- Number of phe in expected range (dead area of pixel, PDE(λ))
- Number of phe is comparable to installed MAGIC PMTs
- One pixel higher than PMT (same gain as other pixels but lower cross-talk)
- Big spread is caused by differences in cross-talk
 → Under investigation

Alexander Hahn

Performance Gen. 2 SensL

- Calibrated using F-Factor
- Number of phe in expected range (dead area of pixel, PDE(λ))
- F-Factor calibration method gives plausible results
- Number of phe is comparable to installed MAGIC PMTs

Performance Cherenkov Events

Camera is triggered on inner region \Rightarrow strong bias due to shower shape

Select only very large showersfor the performance comparison

Summary and Outlook

Goal: SiPM pixel to replace 1" PMT

Achievements

- Three prototypes of different SiPMs installed in MAGIC camera
- Demonstrated two calibration procedures
- Measurements of calibration pulses are all in expected range

Further tasks:

- Comparison of detection efficiencies of real Cherenkov events
- Move SiPM pixels inside trigger region (avoid bias on light distribution)
- Cross-calibration using muon events

Thank you for your attention

© Alexander Hahn, MPP

References

- [1] R. Wagner. Picture gallery of the MAGIC telescopes. https://magicold.mpp.mpg.de/gallery/pictures/ . Retrieved 10-2014
- [2] D. Nakajima, et al. New Imaging Camera for the MAGIC-I Telescope, 2013. Proc. of 33rd International cosmic ray conference.
- [3] D. Renker, et. al., Advances in solid state photon detectors, J. Instrum., 4, 2009.
- [4] S. Vinogradov, Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk, NIM-A, 695:247-251, Dec. 2012