

Overview of Readout Techniques for Cryogenic SiPMs

- Introduction
- Readout techniques
 for major projects
- Summary

W. Ootani ICEPP, University of Tokyo

International Conference on the Advancement of Silicon Photomultipliers Jun. 11th-15th, 2018, Schwetzingen, Germany

Cryogenic SiPM

Cryogenic experiment = best place for SiPM application

- Greatly suppressed DCR (ex. five orders of magnitude at LXe temperature) allows us
 - Large area application
 - Higher dose application
- Per-area cost of SiPM already (almost) comparable to **PMT**
- Even higher density array with minimum dead space possible with TSV technology

Large area application ≥O(1m²) already starting for cryogenic experiments

- MEG II LXe 0.93m² (commissioning)
- Much larger area for (near) future projects

How to readout (large-area) cryogenic SiPM?

- Ganging scheme for large area
 - Passive or active?
- Pre-amplification
 - Cryogenic or room temp?
- Signal transmission
 - Cable, feedthrough

Dark count rate at low temperature

sensL ArrayJ-60035-64P-PCB 64 pcs of 6×6mm²

Several choices depending on requirements and constraints

• Speed, S/N, granularity, # of readout cables, cost, ...

Active ganging

- Better S/N and timing
- Need cryogenic compatible amplifier
 - Power consumption
 - Cooling
 - Bubbling due to local heat
 - Additional radioactivity near active detector volume
 - Influence on purity of liquid

Passive ganging

- Simpler
- Need signal transmission over long cable
- Parallel or series?

Combination of active and passive ganging

Parallel or Series?

Series connection

Comparison of signal shape

- Charge preserved, but amplitude reduced
- Better S/N
- Increasing capacitance→slow rise and long tail
 - Not optimal for timing and high rate
- Need to group SiPMs with same breakdown voltage

Series

- Both charge and amplitude reduced (signal gain reduced)
- Reduced capacitance→fast signal
 - Better for timing
- Automatic over-voltage adjustment even with different breakdown voltages
- Need higher bias voltage (× N)

• Hybrid

- Connected in series, but with decoupling capacitor in between
- Series connection for signal and parallel connection for bias
- Common bias voltage

Combination

Hybrid connection

ront TEnchase Qard C(GEEB) and an acry the 10 s 2 mg 2 Photo hot core 2 Hours of PD Ash d • Covering total area of 14m² • VUV detection with WLS+TPB PhotoDetector Module • DCR < 0.1 Hz/mm² licon-based equivalent of the 4 SiPMs (a tile) of size 1 cm² single, analog, channel. The PDM e and Power specific inca250 ryW developed cs in Redioparity 4-238 The 232 age To be 20k, the PDM must satisfy a equirements, according to the for which an intense R&D has the collaboration.

cm² tiles. A clever cold electro ing the SNR above the minimum requi

rs. After a long and successful R&D excellent -freerksidequadargon experiment f

1Par} 2m Char _matt , jinte dete ng bott

- tota the
- temp

PDM prototype PD Rec Rate

Shape se ctive Total Correlate < 60% for (TCNP) of S2 signals. Photon Detection 0%.Cons ⁸U + Low Field and triple dose technologies were **Dark Sharacterization of these devices at cryogen**

MEG II

LXe scintillation light detection by VUV-MPPC

- Highly granular scintillation readout with 4092 × VUV-MPPCs (139mm² each)
- Covering 0.92m² area with coverage of 62%

S10943-4372

Quartz window (0.5 mm^t)

MEG II Ganging

Requirements and constraints

- High granularity
- Need both good S/N (energy) and high speed (timing)
- No amplification at cryo temp

Passive ganging of 4 sensor segments (6×6mm² each)

- Series connection employed (timing ↔ S/N)
- "Hybrid" connection
 - Series connection for signal
 - Parallel connection for biasing

PCB slab to assemble VUV-MPPCs

- 22 sensors mounted on each PCB
- Series connections
- High bandwidth signal transmission in coaxial-like signal line (50 Ω)
- Precise sensor alignment

ronics at room temp. via ~13m-long coaxial cable Inal transmission

Jm feedthrough

• 50Ω impedance, nign noise immunity, high bandwidth, small cross-talk (<0.3%)

• High density

• 72ch/PCB, 6×PCBs on vacuum flange (DN160)

MEG II Readout Electronics

Combined DAQ-trigger system: WaveDAQ

- # of readout channels: 3000(MEG) → 9000(MEG II)
- WaveDREAM
 - Waveform digitiser (DRS4)
 - Programmable FPGA-based trigger system
 - Bias circuit for SiPM

WaveDREAM board (16ch)

W.Ootani, "Overview

256 readout channel per crate

GERDA Phase II

LAr veto system in GERDA Phase II

• 405 fibers readout at both ends by 90 SiPMs

Fig. 14 The fiber curtain: height $\sim 1\,{\rm m},$ diameter $\sim 0.5\,{\rm m};\,405$ fibers read out on both ends by 90 SiPMs

GERDA Phase II SiPM readout

• 6 × SiPMs (3×3mm²) connected in parallel

- No amplification in LAr
- 20m-long 50 Ω cable to amplifier at room temp.
 - Slow signal
 - Signal and bias share the same cable

SiPM light detection at barrel of nEXO

- VUV-SiPMs covering 4-5m²
- Single photodetector active area >1 cm²
- Power dissipation < 100W
- Noise < 0.1pe per channel

Two options under study for SiPM readout

- Cryogenic analogue readout
- Cryogenic digital readout
 - Very low power consumption <1W

nEXO

Prototype large area SiPM array (24SiPMs, 24cm²)

Segmented anode

<u>nEXO</u> 3D Integrated Digital SiPM

Digital SiPM

- On-cell digitisation
- Low power consumption

• Easier for large scale integration

3D-dSiPM: 3D integration to minimise dead area

- Tier1: SPAD
- Tier2: electronics
- Tier3: Data aggregator and trigger circuit

PHILIPS

Digital SiPM – The Concept

<u>nEXO</u> 3D Integrated Digital SiPM

Prototype for proof-of-principle works

Tilt Corrn. = Off Time :8:11:14

<u>nEXO</u> 3D Integrated Digital SiPM

Operation scheme of 3D integrated digital SiPM

- Each tile of ~1×1cm²
- Wired-OR over SPADs in each tile
- Parallel adder to count # of fired SPAD
- Coincidence over tiles
- Trigger is generated depending on
 - Flag count
 - Coincidence

DUNE Single Phase (SP)

LAr scintillation light detection at DUNE SP/ProtoDUNE SP

• Timing and trigger purpose

10 Photon Detection modules (PDs) per Anode Plane Assemblies (APAs)

- APA frame area: 6060mm × 2300mm
- PD active area: 2076mm × 84mm

A few options for PD

- Light guide with double WLS
- ARAPUCA

DUNE Far Detector Conceptual Design

ARAPUCA (DUNE SP) Ganging

Two options for ganging under study

Passive and active ganging

Passive ganging with parallel connection

Single photon peak as a function of SiPM ganging

ARAPUCA (DUNE SP) Ganging

Active ganging

Active ganging for ProtoDUNE

Summary

- Cryogenic experiment is an ideal place for SiPM application
- SiPM application to cover large area >O(m²) starting
 - Taking advantage of greatly suppressed DCR at cryogenic temperature
- Different choices on readout techniques depending on requirements and constraints
- Experience at MEG II as a forerunner would be an important input for the forthcoming experiments
 See my talk on MEG II

	DarkSide-20k	MEG II	GERDA Phase II	nEXO	DUNE SP (10kt module)
Operating temp	~90K (LAr)	~165K (LXe)	~90K (LAr)	~165K (LXe)	~90K (LAr)
Ganging	passive+active	passive	passive	passive/active/ digital	passive/active
# sensor readout	5210	4092	15	10000	6000
ensor area per readout	25cm ²	1.4cm ²	0.54cm ²	4-5cm ²	17.3cm ² (ARAPUCA) 2.7cm ² (Bar) 5.4cm ² (Split)
Total area	14m ²	0.9m ²	8.1cm ²	4-5m ²	10.4m ² (ARAPUCA) 1.6m ² (Bar) 3.2m ² (Split)
Amplification	~90K	RT	RT	~165K	90K/RT
Status	In preparation	Commissionong	Running	In preparation	In preparation

N.B. the numbers are still unsettled for most of the projects

Thank you for your attention!

W.Ootani, "Overview of Readout Electronics for Cryogenic SiPM Applications", International Conference on the Advancement of Silicon Photomultipliers