Characterization of VUV-sensitive SiPMs for LXe scintillation light detection in nEXO

Michael Wagenpfeil (on behalf the nEXO collaboration) ICASiPM, Schwetzingen, 12.06.2018

Particle Physics Motivation

Physics beyond Standard Model

- Massive neutrino doesn't fit in the Standard Model
- Search for 0vββ-decay to decide Majorana/Dirac nature

Neutrinoless double beta decay

- Hypothetical weak interaction
- Possible only if neutrinos are their own anti-particles
- Current half-life limit (depending on nuclide): ~O(10^{24 - 26} yr) [4]
- Further sensitivity improvement by tonne-scale detectors

• 90% enrichment in ¹³⁶Xe

Drift height ~ diameter ~ 120 cm

• 5t LXe time projection chamber

 \blacktriangleright Planned $0\nu\beta\beta$ -decay search detector

- Modular anode tiles on top
- Electric drift field ~400 V/cm
- 4 m² covered with VUV-sensitive SiPMs
- Low-radioactivity material screening [3]
- TPC immersed in cooling agent HFE
- 600 m³ water tank as veto and shield
- Planned location: SNOLAB (6010 m.w.e.)
- 0vββ 2vββ separation only via event energy → good energy resolution required [2]

ICASiPM'18 | 12.06.2018 | Michael Wagenpfeil

VUV-sensitive SiPMs

- LXe scintillation at 178 nm \rightarrow VUV detectors
- SiPMs interesting:
 - Excellent single photon resolution
 - Possibility for low radioactivity level materials
 - Compact in size, low bias, high gain ~O(10⁶)
- > Energy resolution goal σ/E : 1% at 2.458 MeV
- Limited by photon collection efficiency
- Collection efficiency baseline: $\geq 3\%$
- Photon transport efficiency (PTE) = N_{abs} / N_0
 - Studied by GEANT4 toolkit
 - SiPM surface reflections taken into account
- SiPM photon detection efficiency (PDE > 15%)
 - Can be measured by stand-alone setups
 - \circ PDE = filling factor * QE(θ) * trigger-probability
- Important to understand SiPM reflectance

• PDE measurements at Stanford (in vacuum) [5, 6]

PDE

- Measure ²⁵²Cf spectra for PMT and SiPM via integrated waveforms
- Proper description of PMT gain crucial
- Transfer PMT detection efficiency to SiPM PDE via spontaneous fission peak of ²⁵²Cf
- SiPM in this study: FBK 2016 LF, STD

- PDE vs. overvoltage for two FBK LF and one FBK STD device
- PDE increases with bias voltage
- So does mean number of correlated avalanches
- nEXO requirements fulfilled

- PDE vs. overvoltage for two FBK LF and one FBK STD
- PDE increases with bias voltage
- So does mean number of correlated avalanches
- nEXO requirements fulfilled

PDE

- Noise in light channel dominant for nEXO energy resolution
- Determine fluctuation of energy estimator based on scintillation and ionization yield
- Electronics noise neglected
- Consider high reflectance coating for cathode and field shaping rings
- Publication: [6]

• PDE measurements at TRIUMF, Vancouver

PDE

- PDE determined via mean number of detected photo-electrons
- Corrected for dark noise
- Devices: FBK 2016 LF & Hamamatsu VUV4
- Stanford: Xenon scintillation light TRIUMF: Xenon flash lamp

Reflectance

Several LXe test setups

- ECAP in collaboration with U. Münster (LXe, monochrome)
- IHEP, Beijing (Vac., monochrome)
- LIXO, UA (LXe, scintillation)

Reflectance – ECAP/Münster

U. Münster

- Test setup for XENON coll.
- SiPM in LXe in quartz tube
- 178 nm photons
- First measurement of VUVreflectance of SiPMs in LXe

Zero reference peaks

- Reference peak integral stable within measurement run ~O(d)
- PMT dark rate stable

Reflectance angular distributions

- Strong specular reflections
- Side-peaks around specular peaks due to microstructure

Reflectance – ECAP/Münster

- Calculate reflectance via ratio of peak integrals
- Subtract PMT dark noise
- Measurements for 14 angles of incident
- Beam shadowing at large incident angles
- Statistical uncertainties only

IHEP setup, Beijing

- Two setups at IOE for specular and diffuse reflectance measurements in vacuum
- Silicon waver, FBK, 1.5 µm SiO₂ on top
 R vs Aol for wavelengths within 128-200 nm
 R vs. wavelength for different Aol
- Reflectance calculation from optical theory for simple Si – SiO₂ – vacuum stack
- Comparison with measurement yields refractive index n and extinction coefficient k of Si and SiO₂

measurements Black: from literature Black: Fresnel simulation Red: Measurement AOI: 10°

Measurement and Fit

Reflectivity

20

30

40

50

60

10

ō

Device	Specular (177 nm, 10°)	Diffuse (193nm)	
FBK-VUV-STD	35%	11.5%	
FBK-VUV-LF	40%	12.3%	
FBK-RGB	38%	17%	
FBK wafer	50%	0.16%	

- Complicated microstructure on SiPM surface
- SiPMs have more diffuse reflections compared to waver

- Complicated microstructure on SiPM surface
- SiPMs have more diffuse reflections compared to waver

LIXO (UA)

- Cu semi-cylinder filled with LXe
- ²⁵²Cf source for LXe scintillation light
- SiPMs as reflection sample, specular and diffuse reflectance monitor
- Reflectance measurements will start later in 2018

5

Summary

- Characterization of VUV-sensitive SiPM candidates in full progress
- Dedicated PDE studies at low temperature
- nEXO PDE specifications are achievable
- VUV-sensitive SiPM array for first test TPC
- First VUV-reflectance measurements of SiPMs in LXe accomplished
- Many more setups in preparation to understand SiPM reflectance behavior

nEX®

nEXO:

[1] Al Kharusi et al. [nEXO coll.], arXiv:1805.11142 (2018)

Simulation and sensitivity:

- [2] J.B. Albert et al. [nEXO coll.], arXiv:1710.05075v1 (2017)
- [3] D. S. Leonard et al. [EXO-200 coll.], *Nucl. Instrum. Meth.* A871, 169 (2017)
- [4] J.B. Albert et al. [EXO-200 coll.], Phys. Rev. Lett. 120, 072701 (2018)

VUV-sensitive SiPM:

- [5] A. Jamil et al. [nEXO coll.], arXiv: 1806.02220 (2018)
- [6] I. Ostrovsky et al., *IEEE Trans. Nucl. Sci.* **62** (4) (2015) 825-1836

Backup

The nEXO experiment

- Need for tonne-scale detectors!
 Parameters for performance of nEXO:
- Experience from EXO-200
- Inherent low-background design
 - ²³²Th and ²³⁸U traces of great concern
 - ¹³⁶Xe 2νββ
 - ¹³⁷Xe from neutron-capture in ¹³⁶Xe
- Multi-parameter measurement capability
 - Energy (ionization and scintillation)
 - Standoff distance
 - Multiplicity: Single Site and Multi Site
 - Particle type

Component	Nuclides	Material	Mass or
	Simulated		Surface Area
Outer Cryostat	²³⁸ U, ²³² Th, ⁴⁰ K	Carbon Fiber	1774 kg
Inner Cryostat	²³⁸ U, ²³² Th, ⁴⁰ K	Carbon Fiber	338 kg
Inner Cryostat Liner	²³⁸ U, ²³² Th	Titanium	161.4 kg
HFE	²³⁸ U, ²³² Th	HFE-7000	32700 kg
TPC Vessel	²³⁸ U, ²³² Th	Copper	553.4 kg
Cathode	²³⁸ U, ²³² Th	Copper	26.0 kg
Field Rings (FR)	²³⁸ U, ²³² Th	Copper	73.2 kg
FR Support Leg	²³⁸ U, ²³² Th, ⁴⁰ K	Sapphire	0.94 kg
FR Support Spacer	²³⁸ U, ²³² Th, ⁴⁰ K	Sapphire	2.21 kg
SiPM	²³⁸ U, ²³² Th, ⁴⁰ K	SiPM	4.69 kg
SiPM Support	²³⁸ U, ²³² Th	Copper	136.4 kg
SiPM Module Backing	²³⁸ U, ²³² Th	Quartz	3.2 kg
SiPM Electronics	²³⁸ U, ²³² Th	ASICs	2.04 kg
SiPM Glue	²³⁸ U, ²³² Th, ⁴⁰ K	Epoxy	0.12 kg
SiPM Cables	²³⁸ U, ²³² Th	Kapton	$1 imes 10^4 \ { m cm}^2$
Charge Module Cables	²³⁸ U, ²³² Th	Kapton	$1 \times 10^4 \ {\rm cm}^2$
Charge Module Electronics	²³⁸ U, ²³² Th	ASICs	1.0 kg
Charge Module Glue	²³⁸ U, ²³² Th, ⁴⁰ K	Epoxy	0.35 kg
Charge Module Support	²³⁸ U, ²³² Th	Copper	11.7 kg
Charge Module Backing	²³⁸ U, ²³² Th	Quartz	0.94 kg
TPC LXe Volume	$^{137} \mathrm{Xe},~^{222} \mathrm{Rn},~2\nu\beta\beta,~0\nu\beta\beta$	Xenon	4038 kg
Outer LXe Volume	$^{137}\!\mathrm{Xe},^{222}\!\mathrm{Rn},2\nu\beta\beta,0\nu\beta\beta$	Xenon	1071 kg

The nEXO experiment

- Need for tonne-scale detectors!
- γ interaction cross section
- Shielding ββ decay detectors is difficult
- Detector size of tonne-scale detectors exceeds γ interaction length
- It pays to be homogeneous while having event topology capability

Simulation

- GEANT4 geometry model
- 2vββ and background MC event generation
- Energy deposition algorithm: 3mm cluster
- Fiducial cut (outer 1.5 cm)
- Energy resolution estimation: $\sigma/Q_{\beta\beta} = 1\%$
- Light collection efficiency ~3%
- Electron lifetime of 10 ms sufficient
- Post-simulation reconstruction with help of NEST

Ensemble of toy experiments using radioassay values

Sensitivity

 Simultaneous Log-Likelihood fit of energy, standoff distance and multiplicity

Frequentist approach to sensitivity calculation

- Cut to SS and FWHM around $Q_{\beta\beta}$ highlights BG of greatest concern
- Power of homogeneous detector and multi-parameter fits
- Inner LXe part provides sensitivity while outer part constrains BG

 $(0\nu\beta\beta$ half-life of 5.7×10^{27} y and 10 years live time)

- Power of homogeneous detector and multi-parameter fits
- Inner LXe part provides sensitivity while outer part constrains BG
- No single background index in nEXO but position-dependent function
- BG rate prediction (inner 2000kg): 2.9x10⁻⁴ cts/(FWHM·kg•y) [>70% from ²³⁸U]

- Same procedure for estimating BG budget as validated for EXO-200
- Components in the TPC dominate
- BG counts rather evenly distributed across various components

cts/(FWHM·kg·year)

- Only relatively small improvements with energy resolution
- 2vββ almost negligible: 0.34 counts in 10 years in the entire LXe (however strongly worsens with energy resolution)

- Exclusion limit at 90 % CL computed as the median upper limit of an ensemble of 10⁴ toy experiments
- Majorana neutrino mass sensitivity after in 10 years: 5.7 – 17.7 meV at 90 % CL

nEX®

- Wire planes demand tensioning frame
- Modular segmented anode tiles \succ
- Fabrication with low contamination
- Prototype of 10 cm x 10 cm x 300 µm
- 2 x 30 isolated Au/Ti strips on fused silical substrate
- 30 pads per strip (3 mm diagonal)

Test cell filled with LXe

- ²⁰⁷Bi source (570 keV)
- Electric field: 936 V/cm
- Electron lifetime: ~ 150 µs
- Cold preamps close to feedthroughs

FEEDTHROUGHS-

JV-TRANSPARENT

WINDOW

ANODE

Ø 304mm

- Two stage simulation:
 - GEANT4 & NEST
 - Drift signal simulation
- Cuts on multiplicity, single-strip channels and drift time
- Ionization-only energy resolution consistent with literature

- Drift velocity: ~2mm/µs
- Discrepancy in peak due to mesh electrostatics

- Electric field map via COMSOL
- Drift time cut to exclude variations du to electrostatic effects

VUV-sensitive SiPMs

- Noise in light channel dominant for nEXO energy resolution
- Photon transport efficiency crucial parameter
- Determine fluctuation of energy estimator based on scintillation and ionization yield

