

Statistics and models of SiPM nonlinearity and saturation

Sergey Vinogradov

Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia National Research Nuclear University «MEPhI», Moscow, Russia

Sergey Vinogradov

Statistics of SiPM nonlinearity and saturation **ICASiPM** 14-06-2018

Schwetzingen, Germany

Scope & outline

- Photon detection a series of stochastic processes described by statistics
 - It could be described as a filtered marked correlated history-dependent point process
 - SiPM response a result of the stochastic process a random variable

Nonlinearity and saturation – the most sophisticated topic in SiPM statistics

Binomial nonlinearity – detection of short light pulses (Tpulse < Trecovery)</p>

- Conventional model: Poisson Npe in N pixels
- Adjustments to CT to account for
 - Crosstalk
 - Recovery
- Recovery nonlinearity detection of long light pulses (Tpulse > Trecovery)
 - Conventional model: non-paralizible counting with dead time
 - Advanced model of exponential recovery process
 - Advanced+ model of Markov reward-renewal process

Statistics of linear photon detection

Full characterization of random variable *Nout* resulted from photon detection processes Ο

- Probability distribution Pr(*Nout*) conditional on Pr(*Nin*)
 - Mean <*Nout*>
 - Variance (*Nout*) or $\sigma(N_{out})$
- Partial characterization (the most demanded in practice): 0
 - Mean and Var of *Nout* conditional on Mean and Var of *Nin*
 - Supported by Burgess variance theorem
 - ENF approach for independent process chains allows to analyse specific noise contributions
- Linear detection: responsivity $R = \langle Nout \rangle / \langle Nin \rangle = const$ Ο
 - Resolution σ/μ is degraded by specific ENFs

3

13-06-2018

Statistics of nonlinear photon detection

• Nonlinear: R = R(Nph)

- Nonlinearity = $\underline{random \ losses}$
- Losses depend on load *Nph*
- Output resolution is "improved"
- Calibrated resolution is degraded

 $\sigma_{out} < \sigma_{in} < \sigma_{calibrated}$ even for ideal nonlinear detector

• Excess noise of nonlinearity

$$ENF = \frac{Res_{calib}^2}{Res_{in}^2} = \frac{\sigma_{calib}^2}{\sigma_{in}^2} = \frac{1}{\sigma_{in}^2} \cdot \frac{\sigma_{out}^2}{\left(\frac{d\mu_{out}}{d\mu_{in}}\right)^2}$$

Nonlinear statistics:

- Linear processes + Nonlinear processes =>
- Severe complications in statistics (quantity/history/mutually-dependent processes)
 - New nonlinear distribution Pr(Nout), <Nout>, $\sigma(Nout)$
 - New nonlinear responsivity R = R(Nph)
 - -New ENF of nonlinearity

ICASiPM 1

Binomial distribution of SiPM response

Binomial distribution – detection of short light pulses (Tpulse < Trecovery)</p>

Nuisance Parameters: ENF

ICASiPM

Binomial distribution is presumed

SiPM dynamic range

Dynamic range is limited due to finite total number of pixels mSignal ~ $m(1-exp(-N_{ph.e}/m))$

Urn model with non-random Npe is approximated to normal distribution with binomial μ and σ

The considered problem is equivalent to a well-known problem in mathematical statistics of distributing (randomly) n balls (photoelectrons) into m urns (cells), see e.g. [4]. The number N of urns containing one or more balls is a random variable, its expected value and variance are:

$$\overline{N} = m \left[1 - (1 - m^{-1})^n \right]$$

$$\sigma_N^2 = m \left(m - 1 \right) \left(1 - 2m^{-1} \right)^n + m \left(1 - m^{-1} \right)^n - m^2 \left(1 - m^{-1} \right)^{2n}$$
(1)

The distribution of N is approximately normal when $m, n \to \infty$ and the ratio $\alpha = n/m$ is bounded [4]:

$$\overline{N} = m(1 - e^{-\alpha})
\sigma_N^2 = m e^{-\alpha} [1 - (1 + \alpha) e^{-\alpha}].$$
(2)

In practice the number of cells in a G-APD is usually greater than ~ 100 , which justifies using the asymptotic formulae (2) in the following analysis.

Nuisance Parameters: ENF

SiPM binomial nonlinearity: losses of photons firing the same pixel

O Binomial distribution of fired pixels N_{det} in SiPM (*Tpulse < Trecovery*)

$$\Pr(N_{det}, N_{pix}, p)) = \frac{N_{pix}!}{(N_{pix} - N_{det})! N_{det}!} p^k (1-p)^{N_{pix} - N_{det}} \qquad p = 1 - e^{-\frac{N_{pe}}{N_{pix}}}$$

$$P(0) = \exp\left(-\frac{N_{pe}}{N_{pix}}\right) \quad E[N_{det}] = N_{pix} \cdot [1 - P(0)] \quad Var[N_{det}] = N_{pix} \cdot [1 - P(0)] \cdot P(0)$$

Excess noise factor - S. Vinogradov et al., IEEE NSS/MIC 2009

Losses of simultaneous photons in a pixel results in nonlinearity and excess noise

Sergey Vinogradov

SiPM nonlinearity and saturation

ICASiPM 13-06-2018

Binomial vs Poisson

ICASiPM

Adjustments of binomial model

Crosstalk

• Typical approach: extension of mean Npe to include mean CT events μ_{CT} - Npe \rightarrow Npe(1+ μ_{CT})

• So, Mean
$$N_{det} = N_{pix} \left(1 - e^{-\frac{N_{pe}}{N_{pix}}} \right) \rightarrow N_{pix} \left(1 - e^{-\frac{N_{pe}(1 + \mu_{CT})}{N_{pix}}} \right)$$

- Reasonable from common sense, looks nice and simple but...
- In general, incorrect because Poisson with CT is not Poisson
- What about Variance N_{det} ???

—What about Resolution ???

– And finally - probability distribution ???

Adjustments of binomial model

Recovery

• Typical approach: extension of mean Npix to include mean retriggering events μ_{RT}

- Npix \rightarrow Neff = Npix(1+ μ_{RT})=Npix(1+Tpulse/Trec)

• So, Mean
$$N_{det} = N_{pix} \left(1 - e^{-\frac{N_{pe}}{N_{pix}}} \right) \rightarrow N_{pix} \left(1 + \frac{T_{pulse}}{T_{rec}} \right) \left(1 - e^{-\frac{N_{pe}}{N_{pix}(1 + \frac{T_{pulse}}{T_{rec}})}} \right)$$

- Reasonable from common sense, looks nice and simple...
- In general, <u>possible</u> because Poisson Npe over fixed Neff is still binomial — More reasons in support ???
- What about Variance N_{det} ???

—What about Resolution ???

– And finally - probability distribution ???

• Main question: what about lower Gain due to incomplete recovery?

Adjustments of binomial model

• Crosstalk + Recovery

• Typical approach: both corrections are applied as fitting parameters

• So, Mean
$$N_{det} = N_{pix} \left(1 - e^{-\frac{N_{pe}}{N_{pix}}} \right) \rightarrow N_{eff_{-1}} \left(1 - e^{-\frac{N_{pe}}{N_{eff_{-2}}}} \right)$$

• So, the same concerns and questions

Recovery nonlinearity of SiPM response

Recovery nonlinearity – detection of long light pulses (Tpulse > Trecovery)

Sergey Vinogradov

Nuisance Parameters: ENF

ICASiPM 13-06-2018

18 Schwetzing

SiPM recovery nonlinearity

 $T_{pulse} >> T_{rec}$

Nonparalizible dead time model Probability distribution (~ Gaussian)

W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Ch. XI, John Willey & Sons, Inc., 1968

$$\mu_{Ns} = \frac{\lambda \cdot t}{1 + \lambda \cdot \tau_{dead}}$$
$$\sigma^{2}_{Ns} = \frac{\lambda \cdot t}{(1 + \lambda \cdot \tau_{dead})^{3}}$$

$\begin{array}{l} \mbox{Recovery nonlinearity of SiPM} \\ \rightarrow \mbox{ENF} \end{array}$

S. Vinogradov et al., IEEE NSS/MIC 2009

$$ENF_{eq(Nph)}(\lambda) = 1 + \lambda \cdot \tau_{dead}$$

SiPM recovery nonlinearity: advanced model of exponential recovery

- Non-paralizible dead time model for SiPM (ENF)
- Exponential RC recovery model (*Gain, PDE, ENF*) Losses of sequential photons due to incomplete pixel recovery

S. Vinogradov, SPIE Adv. Photon Counting 2012

Advanced model of exponential recovery: accounting for a transient PDE is a must

Pixel load, photoelectrons per recovery time

Sergey Vinogradov

Nuisance Parameters: ENF

13-06-2018

Comparison of models

Figure 3. Photon Number Resolution for short (binomial model) and long (dead time and RC recovery models) light pulses calculated for MPPC KSX-I50015-E_S12573 Series 50 um pixel size, 3x3 sq. mm area.

Photon Number Resolution

Advanced+ model of SiPM recovery: reward-renewal Markov process:

- Renewal process: conditional probabilities of times between events (photon arrivals & avalanche triggers)
- Reward process: random gain dependent on time delay
- Exponential RC recovery model: Gain(t), PDE(t)

Reward-renewal Markov process model: qualitative correspondence for transient mean

Time, relative to pixel recovery time

SiPM nonlinearity and saturation papers

- C. Adloff et al, "Construction and commissioning of the CALICE analog hadron calorimeter prototype," J. Instrum., vol. 5, no. 5, 2010.
- M. L. Ahnen, "Over Saturation in SiPMs: The Difference Between Signal Charge and Signal Amplitude," *Archiv.org*, p. 4, Jul. 2015.
- [3] A. Arodzero, S. Boucher, J. Hartzell, S. V. Kutsaev, R. C. Lanza, V. Palermo, S. Vinogradov, and V. Ziskin, "High speed, low dose, intelligent X-ray cargo inspection," 2015 IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSS/MIC 2015, 2016.
- [4] A. Arodzero, S. Member, S. Boucher, S. V Kutsaev, V. Ziskin, A. Abstract, and M. I. X. Inspec-, "MIXI: Mobile Intelligent X-Ray Inspection System," in *IEEE NSS/MIC 2015*, 2017, vol. 64, no. 7, pp. 1629–1634.
- [5] T. Bretz, T. Hebbeker, M. Lauscher, L. Middendorf, T. Niggemann, J. Schumacher, M. Stephan, A. Bueno, S. Navas, and A. G. Ruiz, "Dynamic range measurement and calibration of SiPMs," *J. Instrum.*, vol. 11, no. 3, 2016.
- [6] P. BUZHAN et al, "THE ADVANCED STUDY OF SILICON PHOTOMULTIPLIER," in Advanced Technology & Particle Physics -Proceedings of the 7th International Conference on ICATPP-7, 2002, pp. 717–728.
- M. Danilov, "The Calice Analog Scintillator-Tile Hadronic Calorimeter Prototype," in *SNIC Symposium*, 2006, no. April, pp. 1–6.
- S. Dolinsky, "Novel approach for calibration breakdown voltage of large area SiPM Geiger Mode APD and Gain," in *PhotoDet 2012*, 2012.
- S. Dolinsky, "Novel approach for calibration breakdown voltage of large area SiPM," *Proc. Sci.*, pp. 1–6, 2012.
- [10] P. Eckert, R. Stamen, and H. C. Schultz-Coulon, "Study of the response and photon-counting resolution of silicon photomultipliers using a generic simulation framework," J. Instrum., vol. 7, no. 8, 2012.
- L. Gallego, J. Rosado, F. Blanco, and F. Arqueros, "Modeling crosstalk in silicon photomultipliers," J. Instrum., vol. 8, no. 5, 2013.
- E. Garutti, "Silicon photomultipliers for high energy physics detectors," J. Instrum., vol. 6, no. 10, 2011.
- [13] M. Grodzicka, T. Szczęśniak, M. Moszyński, M. Szawłowski, and K. Grodzicki, "New method for evaluating effective recovery time and single photoelectron response in silicon photomultipliers," *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, vol. 783, pp. 58–64, 2015.
- [14] L. Gruber, S. E. Brunner, J. Marton, and K. Suzuki, "Over saturation behavior of SiPMs at high photon exposure," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 737, pp. 11–18, 2014.
- [15] L. Gruber, S. E. Brunner, C. Curceanu, J. Marton, A. R. Vidal, and A. Scordo, "Recovery Time Measurements of Silicon Photomultipliers Using a Pulsed Laser," *Proc. Sci.*, vol. 835, no. July 2015, pp. 0–7, 2012.
- [16] Z. Guoqing, L. Lina, and L. Hanchen, "Demonstration of the over dynamic range of MPPC by high intensity pulsed light illumination," Opt. -Int. J. Light Electron Opt., vol. 127, no. 5, pp. 2936–2938, Mar. 2016.
- Image: [17]P. Hallen, "Determination of the Recovery Time of Silicon Photomultipliers," RWTH Aachen University, 2011.
- [18] A. Heering, A. Karneyeu, I. Musienko, and M. Wayne, "SiPM linearization status update," in *CERN CMS*, 2017, no. January.
- D. Jeans, "Modeling the response of a recovering SiPM," *Archiv.org*, no. 1, pp. 1–5, Nov. 2015.
- [20] J. Jiang, J. Jia, T. Zhao, K. Liang, R. Yang, and D. Han, "Recovery Time of Silicon Photomultiplier with Epitaxial Quenching Resistors," *Instruments*, vol. 1, no. 1, p. 5, 2017.

Sergey Vinogradov

Nuisance Parameters: ENF

ICASiPM 13-06-2018

Schwetzingen, Germany

- [21] K. Kotera, W. Choi, and T. Takeshita, "Describing the response of saturated SiPMs," *Archiv.org*, pp. 1–9, 2015.
- K. Kotera, W. Choi, and T. Takeshita, "Functions Represent SiPM Response Especially Linear Behavior After Saturation," Archiv.org, p. 10, 2015.
- 23] T. Kraehenbuehl, "The First Semiconductor-Based Camera for Imaging Atmospheric Cherenkov Telescopes," ETH Zurich, 2013.
- E. Popova, "Charge and Recovery Time for Oversaturation Conditions," in *PhotoDet 2015*, 2015, pp. 1–20.
- E. Popova, P. Buzhan, A. Pleshko, S. Vinogradov, A. Stifutkin, A. Ilyin, D. Besson, and R. Mirzoyan, "Amplitude and timing properties of a Geiger discharge in a SiPM cell," *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, vol. 787, pp. 270–274, 2015.
- [26] E. Popova and M. Chadeeva, "SiPM mini-workshop," in CERN CMS, 2017, no. November.
- [27] J. Pulko, F. R. Schneider, a Velroyen, D. Renker, and S. I. Ziegler, "A Monte-Carlo model of a SiPM coupled to a scintillating crystal," J. Instrum., vol. 7, no. 2, pp. P02009–P02009, Feb. 2012.
- [28] J. Rosado, "Performance of SiPMs in the nonlinear region," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., no. October, 2017.
- [29] Shaojun Lu, "Correction for the SiPM non-linearity (new perspective on saturation curve) for AHCAL SiPM with scintillator tile," in CALICE ECAL/AHCAL 05/07/2010.
- [30] A. Stoykov, Y. Musienko, A. Kuznetsov, S. Reucroft, and J. Swain, "On the limited amplitude resolution of multipixel Geiger-mode APDs," J. Instrum., vol. 2, no. 6, pp. P06005–P06005, Jun. 2007.
- S. Uozumi, "Study and development of Multi Pixel Photon Counter for the GLD calorimeter readout," Proc. Sci., 2007.
- [32] H. T. Van Dam, S. Seifert, and D. R. Schaart, "The statistical distribution of the number of counted scintillation photons in digital silicon photomultipliers: Model and validation," *Phys. Med. Biol.*, vol. 57, no. 15, pp. 4885–4903, 2012.
- E. Van Der Kraaij, "SiPM Saturation Scans," in *LCD ECAL meeting 20/02/2014*, 2014.
- S. Vinogradov., "Challenges of arbitrary waveform signal detection by SiPM in beam loss monitoring systems with Cherenkov fibre readout," in *Proceedings of Science*, 2015, vol. 6-9-NaN-2, no. July, pp. 4–8.
- S. Vinogradov, "Performance of silicon photomultipliers in photon number and time resolution," in *Proceedings of Science*, 2015, vol. 6-9-NaN-2.
- [36] S. Vinogradov, A. Arodzero, R. C. Lanza, and C. P. Welsch, "SiPM response to long and intense light pulses," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 787, pp. 148–152, 2015.
- [37] S. Vinogradov, "Probabilistic analysis of solid state photomultiplier performance," in *Proceedings of SPIE The International Society for Optical Engineering*, 2012, no. 1, p. 83750S–83750S–9.
- [38] S. Vinogradov, A. Arodzero, and R. C. Lanza, "Performance of X-ray detectors with SiPM readout in cargo accelerator-based inspection systems," *Nucl. Sci. Symp. Conf. Rec. (NSS/MIC), 2013 IEEE*, vol. 58, no. 1, pp. 5–6, 2013.
- [39] S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and C. Sitarsky, "Efficiency of Solid State Photomultipliers in Photon Number Resolution," *IEEE Trans. Nucl. Sci.*, vol. 58, no. 1, pp. 9–16, Feb. 2011.
- [40] N. Wattimena, "Commissioning of an LED Calibration & Monitoring System for the Prototype of a Hadronic Calorimeter," Hamburg, 2006.
- [41] P. A. Amaudruz et al, "The T2K fine-grained detectors," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 696, pp. 1–31, 2012.
- [42] J. Repond et al, "Construction and response of a highly granular scintillator-based electromagnetic calorimeter," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 887, no. July 2017, pp. 150–168, 2018.

The end

Thank you for your attention!

Questions? Objections? Opinions?

vin@lebedev.ru

. . .

Sergey Vinogradov

SiPM nonlinearity and saturation

ICASiPM