

SiPM Noise Measurement with Waveform Analysis

E. Engelmann on behalf of the ICASIPM nuisance parameters group

- I. Introduction of technique for waveform analysis
- **II.** Methods for extraction of nuisance parameters
 - i. Optical crosstalk
 - ii. Dark count rate (comparison of two methods)
 - iii. Correlated noise (afterpulsing and delayed crosstalk)
- **III.** Application of presented methods to simulated SiPM pulses
- IV. Discussion

- I. Introduction of technique for waveform analysis
- II. Methods for extraction of nuisance parameters
 - i. Optical crosstalk
 - ii. Dark count rate (comparison of two methods)
 - iii. Correlated noise (afterpulsing and delayed crosstalk)
- **III.** Application of presented methods to simulated SiPM pulses
- IV. Discussion

- pile-ups due to high DCR (e.g. at high T)
- difficult to analyze single pulses
- LE-threshold not applicable

accessible information:

- number of pulses in WF
- arrival time
- amplitudes (prop. to gain)
- integral (prop. to gain)

accessible information:

- number of pulses in WF
- arrival time
- amplitudes (prop. to gain)
- integral (prop. to gain)

accessible SiPM parameters:

- dark count rate
- optical crosstalk prob.
- afterpulsing + delayed crosstalk
- breakdown voltage via ampl. or integral

- Introduction of technique for waveform analysis
- II. Methods for extraction of nuisance parameters
 - i. Optical crosstalk
 - ii. Dark count rate (comparison of two methods)
 - iii. Correlated noise (afterpulsing and delayed crosstalk)
- **III.** Application of presented methods to simulated SiPM pulses
- IV. Discussion

Optical crosstalk probability

Fabio Acerbi, PhotoDet 2015

- propagation of photons by several paths
 - prompt opt. crosstalk (CT)
 - delayed opt. crosstalk (DCT)
- "delayed self-crosstalk" is also possible
- CT is significantly affected by:
 - package/coupled scintillator
 - substrate material and thickness
 - gain (overvoltage)
 - cell geometry
 - Geiger discharge prob. (overvoltage)

Optical crosstalk probability

Procedure:

- acquisition of randomly triggered WFs
- set LE-threshold at 0.5 p.e.
 (is this really the best choice?)
- DCR determined by avg. number of pulses per WF, divided by length of WF

11

Procedure:

- acquisition of randomly triggered WFs
- set LE-threshold at 0.5 p.e.
 (is this really the best choice?)
- DCR determined by avg. number of pulses per WF, divided by length of WF

Limitations:

- acq. time at low DCR
- speed of electronics at high DCR
- underestimation of DCR due to overlapping
- overestimation of DCR due to late afterpulses and DCT-pulses

12

Procedure:

- triggered acquisition of waveforms
- selection of valid WF
 - contains dark pulse with 1 p.e. ampl.
 - no preceding pulses within certain timegate
- determination of Δt between pulses
- build compl. cumulative distr. function P^{*}_{tot} (S. Vinogradov, doi:10.1109/NSSMIC.2016.8069965)

Procedure:

- triggered acquisition of waveforms
- selection of valid WF
 - contains dark pulse with 1 p.e. ampl.
 - no preceding pulses within certain timegate
- determination of Δt between pulses
- build compl. cumulative distr. function P^{*}_{tot}
 (S. Vinogradov, doi:10.1109/NSSMIC.2016.8069965)

$$P_{\text{tot}}^*(\Delta t) = \exp\left(-DCR \cdot \Delta t\right) \cdot P_{\text{corr}}^*(\Delta t)$$

(prob. that no event occurs at a delaytime $< \Delta t$)

$$\lim_{\Delta t \to \infty} P^*_{\rm corr}(\Delta t) = 1 - P_{\rm CP}$$

Procedure:

- triggered acquisition of waveforms
- selection of valid WF
 - contains dark pulse with 1 p.e. ampl.
 - no preceding pulses within certain timegate
- determination of Δt between pulses
- build compl. cumulative distr. function P^{*}_{tot}
 (S. Vinogradov, doi:10.1109/NSSMIC.2016.8069965)
- fit DCR as slowest component of P_{tot}^*

$$P_{\text{tot}}^*(\Delta t) = \exp\left(-DCR \cdot \Delta t\right) \cdot P_{\text{corr}}^*(\Delta t)$$

(prob. that no event occurs at a delaytime $< \Delta t$)

$$\lim_{\Delta t \to \infty} P^*_{\rm corr}(\Delta t) = 1 - P_{\rm CP}$$

Advantages:

- acq. of one data-set is enough to measure DCR, CT, corr. noise and V_{BD}
- no need to decide for DCR threshold
- min. threshold determined by electronic noise
- full information about P_{corr} without making assumptions

Advantages:

- acq. of one data-set is enough to measure DCR, CT, corr. noise and V_{BD}
- no need to decide for DCR threshold
- min. threshold determined by electronic noise
- full information about P_{corr} without making assumptions

Limitations:

- afterpulsing and delayed crosstalk are not distinguished
- fast afterpulses are lost due to small ampl.
- length of WF must be scaled with DCR

- P_{CP} strongly depends on chosen threshold (T_{det})
- standardization required for datasheets of producers
- evaluation of afterpulses according to their amplitude?

Probability of correlated pulses (P_{CP})

- P_{CP} strongly depends on chosen threshold (T_{det})
- standardization required for datasheets of producers
- evaluation of afterpulses according to Δt and recovery time?

- Introduction of technique for waveform analysis
- II. Methods for extraction of nuisance parameters
 - i. Optical crosstalk
 - ii. Dark count rate (comparison of two methods)
 - iii. Correlated noise (afterpulsing and delayed crosstalk)
- III. Application of presented methods to simulated SiPM pulses
- IV. Discussion

- waveform analysis is applied to simulated SiPM output
- simulation software is provided by Johannes Breuer (for more information visit his talk Wed. at 17:00)
- nuisance parameters are turned on successively
- 50k waveforms with a length of 5 μs are analyzed

Waveform analysis of simul. SiPM output

КЕТЕК

- the pulse-amplitudes are used for the analysis
- pulse counting and CCDF method are compared
- LE-threshold set at 0.5 p.e. for pulse counting method
- LE-threshold set to 0.25 p.e. for CCDF method

Parameter	Value
DCR [MHz]	variable
Р _{ст} [%]	0
P _{AP} [%]	0
P _{DCT} [%]	0

- comparable results of both methods at lower DCR
- underestimation at high DCR by pulse counting
- reason: coincidential dark pulses

- if Δt is too small, pulses are not distinguished
- Δt and Δt' are not accessible
- instead Δt" is measured
- but Δt''≈ Δt'

- if Δt is too small, pulses are not distinguished
- Δt and Δt' are not accessible
- instead Δt" is measured
- but Δt''≈ Δt'

pulse counting significantly underestimates DCR

CCDF is less sensitive to coincidential dark pulses

Parameter	Value
DCR [MHz]	2
Р _{ст} [%]	variable
P _{AP} [%]	0
P _{DCT} [%]	0

- overestimation of P_{CT} due to coinciding dark pulses
- relative error increases with decreasing P_{CT}
- correction from slide is recommeded at high DCR

Variation of AP

Parameter	Value
DCR [MHz]	2
Р _{ст} [%]	9.5
P _{AP} [%]	variable
P _{DCT} [%]	0

 underestimation of P_{AP} due to inefficient detection of fast afterpulses

Variation of AP

$$P_{\text{tot}}^*(\Delta t) = \exp\left(-DCR \cdot \Delta t\right) \cdot P_{\text{corr}}^*(\Delta t)$$

$$P_{\text{tot}}^*(\Delta t) = \exp\left(-DCR \cdot \Delta t\right) \cdot P_{\text{corr}}^*(\Delta t)$$

$$P_{\rm corr}\left(\Delta t\right) = P_{\rm C}\left(1 - \exp\left[-\frac{\Delta t}{\tau_{corr}}\right]\right)$$

commonly used model

$$P_{\text{tot}}^*(\Delta t) = \exp\left(-DCR \cdot \Delta t\right) \cdot P_{\text{corr}}^*(\Delta t)$$
$$P_{\text{corr}}(\Delta t) = P_{\text{C}}\left(1 - \exp\left[-\frac{\Delta t}{\tau_{corr}}\right]\right)$$
$$\textbf{commonly used model}$$
$$\exp\left[-\frac{\Delta t}{\tau_{corr}}\right] = 1 - \frac{\left(1 - \frac{P_{\text{tot}}^*}{\exp[-DCR \cdot \Delta t]}\right)}{P_{\text{C}}}$$

Variation of AP

Variation of AP

Parameter	Value
DCR [MHz]	2
Р _{ст} [%]	9.5
P _{AP} [%]	5
P _{DCT} [%]	variable

- similar problems as for pure afterpulsing
- underestimation of P_{CP} due to inefficient detection of fast pulses

35

- overestimation of P_{CT} increases with P_{DCT}
- not clear how to separate fast DCT and CT
- is a temperature sweep a possible solution?

- Introduction of technique for waveform analysis
- II. Methods for extraction of nuisance parameters
 - i. Optical crosstalk
 - ii. Dark count rate (comparison of two methods)
 - **iii**. Correlated noise (afterpulsing and delayed crosstalk)
- **III.** Application of presented methods to simulated SiPM pulses

IV. Discussion

- Where to set threshold for detection of afterpulses?
 - datasheets are not comparable otherwise
- Shall afterpulses be weighted according to their amplitude?
- How to distinguish between DCT and AP?
 - amplitude is only a workaround, cannot be applied for fast recovery
 - use special structures with varying quenching resistors?
- How to distinguish between CT and fast DCT?
 - DCT is based on diffusion
 - time-constant of DCT should vary with T
 - CT shows no/weak T dependence