A Method and Experimental Setup to Measure SiPM Saturation

Sascha Krause, JGU Mainz & PRISMA Detector Lab

Saturation Correction in CALICE ScECAL

Katsushige Kotera

ICASiPM

14.06.2018

Bundesministerium und Forschung

Outline

SiPM saturation measurement setup (S. Krause)

Introduction & definitions

Proceedings paper in preparation: PM2018 – 14th Pisa Meeting on Advanced Detectors (Q. Weitzel)

- SiPM response measurement procedure
- SiPM response results

Saturation correction in CALICE ScECAL (K. Kotera)

- ScECAL & calibration procedure
- Saturation correction in CALICE
- Advanced saturation model

SMD SiPM on PCB Photo by Yong Liu, JGU Mainz

${ m SiPM}$ (Hamamatsu)	$N_{\rm total}$	pixel pitch $[\mu m]$	sensitive area $[mm^2]$	typical gain	trenches
MPPC S13360 -1325PE	2668	25	1.3×1.3	$7.0 \cdot 10^5$	yes
MPPC S12571 -25P	1600	25	1×1	$5.15\cdot 10^5$	no
MPPC S12571 -50P	400	50	1×1	$1.25 \cdot 10^{6}$	no
MPPC S12571 -100P	100	100	1×1	$2.8 \cdot 10^{6}$	no

arXiv:1510.01102v4

Introduction: SiPM Crosstalk, Saturation & N_{seed}

100 pixel SiPM:

 $\epsilon_{PDE} = 0.5$ efficiency

 $\mu_{\it C}=1.25$ correlated noise (XT)

← 25% Crosstalk

Comparable to L. Gruber et al, 2014 https://doi.org/10.1016/j.nima.2013.11.013

Definitions

Number of seeds N_{seed}:

Number of photons, which hit the sensitive area of the SiPM and could trigger an avalanche (including PDE) in case of linear behavior (no multi-hits on pixels).

$$N_{seed} \coloneqq N_{\gamma} \cdot \varepsilon_{PDE}$$

In calibration region:

influenced by correlated noise (XT):

$$N_{fired} = N_{fired}^{linear} = N_{seed} \cdot \mu_{C}$$

 $\Rightarrow N_{seed} = N_{fired}^{linear} / \mu_{C}$
In this way, I_{ref} can be calibrated to N_{seed}

 N_{γ} : Number of incident photons

 ε_{PDE} : Photon Detection Efficiency

 μ_C : Correlated noise, in first order defined as: $\mu_C = 1 + E(XT)$

 N_{fired} : Number of pixels fired (main observable)

f: Function describing saturation & correlated noise

In saturation region:

Number of pixels fired influenced by saturation AND correlated noise (XT):

$$N_{fired} = f(N_{seed})$$

Modeling SiPM Response Saturation

(1) Simple **exp**. response function: $N_{fired}(N_{seed}) = N_{total} \cdot \left(1 - exp\left(-\frac{N_{seed}}{N_{total}}\right)\right)$ (2) XT - extended response function: (P. Eckert et al, 2012, https://doi.org/10.1088/1748-0221/7/08/P08011) $\overline{N_{fired}(N_{seed})} = N_{total} \cdot \frac{1 - X}{1 - \epsilon_{VT} \cdot X}$ invertible!

(3) Advanced response function: (K. Kotera, arXiv:1510.01102)

NLO corrections:

6 parameters:

N_{total},

scale factor,

2x decay/recovery time variables, describe **over saturation**

with $X = exp\left(-\frac{N_{seed}}{N_{total}}\right)$

Crosstalk- & Afterpulse prob.

fixed to total number of pixels fixed to 1

include correlated noise

SiPM Response: Setup as part of the PRISMA DetectorLab Mainz

- Direct-Readout-Circuit linear within 1% over full measurement range.
- PreAmp starts to saturate from ~1V output, linear within 2% for lower signals.
- Reference diode linear within 1% over full measurement range.
- Impact of after pulses estimated ~1%.

Uniform light distribution:

Diffusor intensity profile uniform within 1.5%

SiPM Response: Procedure for latest SiPM (2668 pixels)

gain/qdc_2nD8_1_105_63500.data

0. Dedicated XT measurement:

Determine average number of correlated pixels fired, μ_C (Borel Model of correlated noise) (E. Schioppa, 2017, arXiv:1710.11410).

1. Pedestal correction:

QDC Spectrum with applied bias voltage without laser beam.

2. Gain measurement:

Difference between adjacent peaks.

In case of 1600 pixel SiPM: use Preamp and Direct Box.

3. QDC High- to Low-Range conversion:

The QDC has two different amplification modes. Measure and apply conversion factor.

4. Estimate light intensity with calibrated diode:

5. Plot QDC mean values vs. laser intensity:

199970 142.3 17.84

0g

p1

Gain vs Bias Voltage

62.68 / 119

-35.17 ± 0.1818

 0.6795 ± 0.002932

SiPM Response: Procedure for latest SiPM (2668 pixels)

6. Estimate and plot N_{fired} vs laser tune:

$$N_{fired} = (QDC_{mean} - pedestal)/gain$$

7. Plot #pixels vs reference current.

8. Apply linear fit to first measurement points, where linear behavior is still expected:

Determine number of "Seeds", N_{seed}!

remember introduction:

In calibration region:

Definition of N_{fired}^{linear} :

$$N_{fired}^{linear}(i) = p0 + p1 \cdot I_{ref}(i)$$

Definition of N_{seed} :

$$N_{seed}(i) = N_{fired}^{linear}(i)/\mu_{C}$$

⇒ convert reference current to number of seeds taking into account the correlation factor.

Combined SiPM Response Results

Conclusion so far

For 4 different SiPM types:

Crosstalk measurement performed: μ_C (range between 1.01 ÷ 1.89)

Response measurement:

Method taking into account the influence of crosstalk in the calibration.

100px and 400px SiPM:

- *Crosstalk* has a large influence on the response behavior.
- For high light intensities, an over saturation has been observed (best handled by Advanced function)

1600 and 2668 pixel SiPM:

- Influence of crosstalk:
 - 2668px: negligible
 - 1600px: lower, but still measurable influence.
- No hint for over saturation in the measured range.

Next steps in regards to applications in calorimeters:

• Setup measuring the combination: scintillator + SiPM

CALICE ScECAL

Calibration procedure of ScECAL (Note: omit Inter-calibration procedure of bigh/low gain mades of bigh/low gain mades of procedure of the pro

Note: omit Inter-calibration const. between high/low gain modes of DAQ for simplicity.

Saturation correction of ScECAL to get F-1(# fired pix), F-1(N_{fire})

Note: AHCAL group measured all 7608 SiPMs → Individually used

Saturation correction : Farther improvement : an approximation

Calibrate 10[^]7 SiPMs in ILC cal. → need fast and wide range

Increase only one parameter $\{\,2(\,\alpha\,,oldsymbol{eta}\,)\,$ - $1(N_{
m pix}^{
m eff}
ightarrow N_{
m pix}\,)\}$

$$N_{\text{fire}}^{LO} = N_{\text{pix}} \left(1 - e^{\frac{-\epsilon N_{\text{in}}}{N_{\text{pix}}}} \right) =: LO$$

$$N_{\rm fire}^{LNO} = (1 - \alpha)LO + \alpha \epsilon N_{\rm in} =: NLO$$
 \Rightarrow simple recovery

$$N_{\rm fire}^{NLO'} = N_{\rm fire}^{NLO} \frac{{\color{blue} \beta} + 1}{{\color{blue} \beta} + \epsilon N_{\rm in}/LO} =: NLO' \ \ \, {\color{blue} \Rightarrow approx. charge contribution}$$

$$N_{\rm fire}^{NLO'_{\rm C.A.}} = NLO' \times (1 + P_C e^{-\epsilon N_{\rm in}/N_{\rm pix}})(1 + P_A)$$
 Xtalk and after pulse 5

Charge contribution of each hit

a pulse of photons approaching SiPM

charge contribution by a photon

D. Jeans arXiv:1511.06528
$$Q_0\Big[1+\sum_{j=2}^k\Big\{1-\frac{\zeta}{\zeta+(k+1-j)^{-1}}\Big\}\Big]/k$$

k: # of photons on a pixel in this event, $Q_0:$ charge by a single photon,

$$\zeta = rac{ au_R}{ au_s}$$

Thank you for your attention!

SiPM saturation measurement setup (S. Krause)

<u>Crosstalk measurement</u> performed: μ_C (range between $1.01 \div 1.89$)

Response measurement:

Method taking into account the influence of crosstalk in the calibration.

100px and 400px SiPM:

- Crosstalk has a large influence on the response behavior.
- For high light intensities, an over saturation has been observed (best handled by Advanced function)

1600 and 2668 pixel SiPM:

- Influence of crosstalk:
 - 2668px: negligible
 - 1600px: lower, but still measurable influence.
- No hint for over saturation in the measured range.

Saturation correction in CALICE ScECAL (K. Kotera)

- CALICE ScECAL using scintillator tiles wrapped with reflective foil read out by SiPM.
- Calibration procedure correcting for the saturation of SiPM.
- Saturation Correction:
 - Naive model with effective number of total pixels N_{total}^{eff} (to handle pixel recovery).
 - Advanced model, fixing N_{total} , adding recovery, approx. charge contribution, XT and AP.

Questions?

SiPM crosstalk (XT) measurement

Waveforms Persistence Display

Low amount of after pulses for each SiPM! -> neglected.

Crosstalk measurement: Average number of correlated pixels fired μ_C

To estimate the average number of correlated pixels fired, the **Borel Model of correlated noise** is used as described in detail in arXiv:1710.11410v1

Borel Model:

Equation to be solved: $\xi(e^{-\xi} - 1) = \frac{N_2}{N_1} + \log(\frac{N_1}{N_0})$

Expected value: $\mu = \frac{1}{1-\xi}$

arXiv:1710.11410v1

With:

 $N_0 = \text{total number of events}$

 N_1 = all events with exactly one pixel fired (no XT)

 N_2 = events with exactly 1 XT (2 pixels fired in total)

Gain Estimation with PreAmp | Conversion factor: PreAmp -> DirectBox

Plot QDC values vs. diode current Apply linear fits:

Conversion Factor:

$$\alpha = \frac{f_D}{f_P} = \frac{a_D}{a_P} = 0.073120 \pm 0,000201$$

With this factor, the gain value can be estimated:

gain_PreAmp = 33.61

-> gain_Direct = 2,457 +-0,015

$$gain_D = \alpha \cdot gain_P$$

Gain Measurement with PreAmp:

Engineered Diffuser Scan

The uniformity of the Engineered Diffuser was tested in a separate measurement. It converts a gaussian beam profile in a so-called top-hat profile with uniform intensity.

Measured with 1600pix SiPM with 1x1mm² active surface.

The red area indicates a very uniform illumination of the SiPM.

The green halo corresponds to the cases, where only parts of the SiPM are hit.

Laser ~1%

Diffuser

on XYZ-Stage

^{*}Position used during saturation measurement.

Direct Box Circuit & After Pulse Prob.

S1336x Series (25, 50, 75 μm)

Afterpulse probability depends on Vover

Components

- PiLas Picosecond Laser (A.L.S. GmbH), 60ps FWHM, $\lambda = 467$ nm
- 2x2 Fiber Optic Coupler (Thorlabs), splitting ratio 99:1, center wavelength 488 ± 15 nm
- Engineered diffuser ED1-S20-MD (Thorlabs), 20°
- Ground glass diuser DG10-220 (Thorlabs)
- Movable stage (M-403.2DG) 50 mm travel range, $0.2\mu m$ minimum incremental motion, resolution $0.018\mu m$
- Fast wideband amplifier (A1423B), 1.5 GHz bandwidth, tunable gain [+18,+54]dB
- 8 channel dual range multievent QDC, CAEN V965A, 12 bit
- Reference Diode FDS1010-CAL, (Thorlabs)
- Picoamperemeter (Model 6485, Keithley)
- Power supply EA-PSI 6150
- Function generator (33500B former Agilent, now Keysight Technologies)

Bundesministerium für Bildung und Forschung