PDE Measurement for Digital SiPMs: Comparison Between Pulsed And Continuous Light Methods

Frédéric Vachon
Samuel Parent, Frédéric Nolet, Henri Dautet, Serge A. Charlebois, Jean-François Pratte

Interdisciplinary Institute for Technological Innovation (3IT), University of Sherbrooke

ICASiPM, June 12th 2018
Terminology

Analog SiPM:
- each SPAD is coupled 1 to 1 to a passive quenching resistor
- SPAD signals are summed up to a common reading node before amplification, shaping and digitization

Digital SiPM:
- each SPAD is coupled 1 to 1 to a CMOS quenching circuit (QC)
- each QC output is read and digitalized (event counter, TDC, SPAD address, etc.)
Typical data outputs in a digital SiPM

Analog monitor (current sum)

Fully digital communication: 4 x 64-bit data frame

With control over:
- hold-off time
- pulse amplitude

Start frame
SiPM address
0000000000000000
0009073DF45802FF
AAAAAABAAAAAAB
Event counter
Timestamps
SPAD address
Stop frame

Fig. 11. Charge histogram for four different light intensities with clear steps of 0 to 90 SPADs triggered at the same time showing the single photon resolution capability of the digital SiPM. [Nolet 2016] doi: 10.1109/TNS.2016.2582686

Custom communication protocol for PET scanner
Typical data outputs in a digital SiPM

Analog monitor (current sum)

Fully digital communication: 4 x 64-bit data frame

Start frame
SiPM address
Event counter
Timestamps
SPAD address
Stop frame

Custom communication protocol for PET scanner

Fig. 11. Charge histogram for four different light intensities with clear steps of 0 to 90 SPADs triggered at the same time showing the single photon resolution capability of the digital SiPM. [Nolet 2016] doi: 10.1109/TNS.2016.2582686
Definition of PDE:

\[\text{PDE} = \text{QE}(\lambda) \cdot \mathcal{P}_{BD}(E) \cdot FF \]

where
- QE : quantum efficiency
- \(\mathcal{P}_{BD} \) : breakdown initiation probability
- FF : filling factor

Very basics of the PDE measurement:

Ratio between detected photons \(N_{\text{ph}} \) and photons really impinging on the detector \(N_{\text{ref}} \).

\[\text{PDE} = \frac{N_{\text{photon} + \text{dark noise}} - N_{\text{dark noise}}}{N_{\text{ref}}} \]
SiPM Photon Detection Efficiency

Definition of PDE:

\[\text{PDE} = \text{QE}(\lambda) \cdot \mathcal{P}_{\text{BD}}(E) \cdot \text{FF} \]

where
- \text{QE} : quantum efficiency
- \mathcal{P}_{\text{BD}} : breakdown initiation probability
- \text{FF} : filling factor

Very basics of the PDE measurement:

Ratio between detected photons (\(N_{\text{ph}}\)) and photons really impinging on the detector (\(N_{\text{ref}}\)).

\[\text{PDE} = \frac{N_{\text{photon} + \text{dark noise}} - N_{\text{dark noise}}}{N_{\text{ref}}} \]

Challenge: distinguishing correlated events (afterpulsing, optical crosstalk) from uncorrelated events (thermal noise, photons) otherwise → PDE overestimation
PDE measurement methods

Methods commonly used in the literature:

- Photocurrent method: IV characteristics [Zappalà 2016]
- Continuous-light counting method: Time delays distribution [Piemonte 2012]

PDE measurement methods

Methods commonly used in the literature:

- Photocurrent method: IV characteristics [Zappalà 2016] → Cannot be used for digital SiPM

- Continuous-light counting method: Time delays distribution [Piemonte 2012]

PDE measurement methods

Methods commonly used in the literature:

- Photocurrent method: IV characteristics [Zappalà 2016] Cannot be used for digital SiPM
- Continuous-light counting method: Time delays distribution [Piemonte 2012]

Comparing their applicability to digital SiPM

Setup

Two steps measurement using continuous light

1. Measure light intensity with a calibrated photodiode

\[
N'_{\text{Ref.}} = \frac{\lambda}{h \cdot c} \cdot (P_{\text{ph+dn}} - P_{\text{dn}})
\]

2. Record SiPM event time stamps and calculate the rate of uncorrelated events using either methods
Setup

Two steps measurement using continuous light

1. Measure light intensity with a calibrated photodiode

\[N_{\text{Ref.}} = N'_{\text{Ref.}} \cdot (1 - T_{\text{NDF}}(\lambda)) \]

2. Record SiPM event time stamps and calculate the rate of uncorrelated events using either methods

\[N'_{\text{Ref.}} = \frac{\lambda}{h \cdot c} \cdot (P_{\text{ph}+dn} - P_{dn}) \]

1. Power meter
2. Event time stamps

Wideband Tungsten Halogen Lamp
Monochromator
Optical Fiber
Calibrated Neutral Density Filter
Positioning Camera
Calibrated Photodiode
Microscope Lens
DUT
XYZ stage

frederic.f.vachon@usherbrooke.ca
Continuous-light counting method

- Measure time delays between consecutive events

- Build a Δt histogram: according to Poisson statistic, time delays of uncorrelated events (thermal noise or photons) will follow an exponentially decreasing distribution

- Extract uncorrelated events from correlated events with the appropriate fit.
Continuous-light counting method

Log Y-axis and Linear X-axis

Log Y-axis and Log X-axis
Continuous-light counting method

Log Y-axis and Linear X-axis

Log Y-axis and Log X-axis

Afterpulsing
Continuous-light counting method

Log Y-axis and Linear X-axis

Log Y-axis and Log X-axis

Afterpulsing

Fit limits
Continuous-light counting method

Log Y-axis and Linear X-axis \(y = -CR \cdot t \)

Log Y-axis and Log X-axis \(y = A \cdot t \cdot \exp(-CR \cdot t) \)

Afterpulsing

Count Rate

Fit limits

SPAD address: M14-S02
Wavelength: 480 nm
\(t_0 \): 200 ns
- Count the number of times where no events were detected during a given interval

- Assuming that uncorrelated events (thermal noise and photons) follow a Poisson distribution, the probability of events is:

\[
\mathcal{P}(k \text{ events in interval}) = e^{-\mu} \frac{\mu^k}{k!}
\]

where

- \(\mu \) is the average number of events per interval
- \(k \) is the number of events during an interval
Pulsed-light counting method

- Count the number of times where no events were detected during a given interval

- Assuming that uncorrelated events (thermal noise and photons) follow a Poisson distribution, the probability of events is:

\[P(k \text{ events in interval}) = e^{-\mu} \frac{\mu^k}{k!} \]

where

- \(\mu \) is the average number of events per interval
- \(k \) is the number of events during an interval

- If \(k = 0 \) \(\rightarrow P(0) = e^{-\mu} \) → immune to correlated events
Pulsed-light counting method

- Count the number of times where no events were detected during a given interval

- Assuming that uncorrelated events (thermal noise and photons) follow a Poisson distribution, the probability of events is:

\[P(k \text{ events in interval}) = e^{-\mu} \frac{\mu^k}{k!} \]

where
- \(\mu \) is the average number of events per interval
- \(k \) is the number of events during an interval

- If \(k = 0 \) \(\rightarrow P(0) = e^{-\mu} \rightarrow \text{immune to correlated events} \)

- The number of intervals with 0 event is:

\[N_0 = N_{\text{total}} \cdot P(0) \]

where
- \(N_{\text{total}} \) is the total number interval taken
Pulsed-light counting method

- Count the number of times where no events were detected during a given interval

- Assuming that uncorrelated events (thermal noise and photons) follow a Poisson distribution, the probability of events is:

\[
P(\text{k events in interval}) = e^{-\mu} \frac{\mu^k}{k!}
\]

where
- \(\mu \) is the average number of events per interval
- \(k \) is the number of events during an interval

- If \(k = 0 \) \(\rightarrow P(0) = e^{-\mu} \) \(\rightarrow \text{immune to correlated events} \)

- The number of intervals with 0 event is:

\[
N_0 = N_{\text{total}} \cdot P(0)
\]

where
- \(N_{\text{total}} \) is the total number interval taken

The average number of uncorrelated events in a given interval is then:

\[
\mu_{\text{ph}} = \mu_{\text{ph+dn}} - \mu_{\text{dn}} = -\ln\left(\frac{N_0^{\text{ph+dn}}}{N_{\text{total}}}\right) + \ln\left(\frac{N_0^{\text{dn}}}{N_{\text{total}}}\right) = \ln\left(\frac{N_0^{\text{dn}}}{N_0^{\text{ph+dn}}}\right)
\]
Pulsed-light counting method

- Common procedure for analog SiPM is by flashing a LED so that, in the same data set, some intervals at a known rate contain photon events (μ_{ph+dn}) and some, dark noise events (μ_{dn}).

![Amplitude vs. Time Graph]

- Maximum pulse height in interval:
 - Dark Noise interval (dn): 2
 - Flash interval (ph+dn): 0
 - Dark Noise interval (dn): 1
 - Flash interval (ph+dn): 1

Pulsed counting method using a continuous-light source

Different procedure using a continuous-light source with digital SiPM time stamps

1. Acquire 2 time stamps frame: with and without light

2. Sample frame to the event distribution
 a) Draw a random time between given boundaries
 b) Count number of events in a time interval of fixed width
 c) Acquire a large number of intervals
 d) Build a histogram of 0, 1, 2, ..., k events
 e) Extract N_{0}^{dc}, N_{0}^{ph+dc} and N_{total}

\[\mu_{ph} = \ln \left(\frac{N_{0}^{dc}}{N_{0}^{ph+dc}} \right) \]
Pulsed counting method using a continuous-light source

Extracting N_0 and N_{total}

from time stamps (Digital SiPM)

from pulse amplitudes (Analog SiPM)

Figure 5: Pulse-height distributions of Hamamatsu SiPM signals recorded in a PDE measurement. See text for details on the signal extraction. A total of 10,000 flashes contribute to each distribution.

Pulsed counting method using a continuous-light source

Dependence on interval width

- Interval width is chosen where the count rate plateaus
- Number of total intervals taken gives an upper limit

Expression of event

\[t_{\text{hold-off}} \]

Interval width

Time of event

Absolute time of event (s)

1n 10n 100n 1µ 10µ 100µ 1m 10m 100m 1

Count Rate (s⁻¹)

0,0 1,5x10⁴ 3,0x10⁴ 4,5x10⁴ 6,0x10⁴

Interval width (s)

N_{total} = 10^5

SPAD address : M14-S02
Wavelength : 480 nm
\(t_{\text{hold-off}} \) : 200 ns
\(V_{\text{ov}} \) : 0.6 V

Dependence on interval width - Interval width is chosen where the count rate plateaus - Number of total intervals taken gives an upper limit

Expression of event

\[t_{\text{hold-off}} \]

Interval width

Time of event

Absolute time of event (s)

1n 10n 100n 1µ 10µ 100µ 1m 10m 100m 1

Count Rate (s⁻¹)

0,0 1,5x10⁴ 3,0x10⁴ 4,5x10⁴ 6,0x10⁴

Interval width (s)

N_{total} = 10^5

SPAD address : M14-S02
Wavelength : 480 nm
\(t_{\text{hold-off}} \) : 200 ns
\(V_{\text{ov}} \) : 0.6 V

Dependence on interval width - Interval width is chosen where the count rate plateaus - Number of total intervals taken gives an upper limit

Expression of event

\[t_{\text{hold-off}} \]

Interval width

Time of event

Absolute time of event (s)

1n 10n 100n 1µ 10µ 100µ 1m 10m 100m 1

Count Rate (s⁻¹)

0,0 1,5x10⁴ 3,0x10⁴ 4,5x10⁴ 6,0x10⁴

Interval width (s)

N_{total} = 10^5

SPAD address : M14-S02
Wavelength : 480 nm
\(t_{\text{hold-off}} \) : 200 ns
\(V_{\text{ov}} \) : 0.6 V
Pulsed counting method using a continuous-light source

Dependence on interval width

- Interval width is chosen where the count rate plateaus
- Number of total intervals taken gives an upper limit

Time of event

- Interval width

Count Rate (s⁻¹)

Interval width (s)

SPAD address : M14-S02
Wavelength : 480 nm
\(t_{\text{hold-off}} \) : 200 ns
\(V_{\text{ov}} \) : 0.6 V

\(\ln(N_{\text{total}}) \) / Interval Width

\(N_{\text{total}} = 10^5 \)
Pulsed counting method using a continuous-light source

Dependence on interval width

- Interval width is chosen where the count rate plateaus.
- Number of total intervals taken gives an upper limit.

![Graph showing count rate vs. interval width](image)
Pulsed counting method using a continuous-light source

Dependence on interval width

- Interval width is chosen where the count rate plateaus
- Number of total intervals taken gives an upper limit

Time of event

Count Rate (s⁻¹)
Interval width (s)
SPAD address : M14-S02
Wavelength : 480 nm
\(t_{\text{hold}} \) : 200 ns
\(V_{\text{ov}} \) : 0,6 V

\(\sum \) : 10⁵

\(N_{\text{total}} = 10^5 \)
Comparison between methods

Time delays and pedestal peak using a continuous-light source

\[PDE(\lambda) = \frac{N_{ph+dn} - N_{dn}}{N'_{Ref.} \cdot (1 - T_{NDF})} \]
Both methods do apply to digital SiPM time stamps: time delays and pedestal peak.

Both methods were done only using a continuous-light source (instead of flash LED).

- Gives access to any wavelengths.

Digital SiPM are built most of the time following an application-specific architecture.

- For characterization purposes having access to time stamps of event is sufficient.

- … or a time-driven event counter with a configurable interval width.
Acknowledgements

Thank you!