

1

Neutron Radiation & recovery studies of SiPMs

Thomas Tsang

Brookhaven National Laboratory, Upton, NY 11973

ICASiPM, Schwetzingen, Germany, June 14, 2018

<u>Outline</u>

- 1. Main effect of neutron radiation
- 2. Charactization techniques:

IV & photon-counting & PNR

- 1. SiPMs performance with increasing dosage
- 2. Recovery: thermal anneal with +I bias
- 3. Irradiation in LN2

SiPM in neutron radiation environment

Estimates for 2013 run (L=526 pb⁻¹): R= 3-8 cm, $|Z| < 10 \text{ cm} : \Phi_{eq} \sim 8 \times 10^{10} \text{ n/cm}^2$ R= 100 cm, Z = 675 cm : $\Phi_{eq} \sim 2.2 \times 10^{10} \text{ n/cm}^2$

CMS

The main effect of radiation

The main effect of radiation

- 1. Increase of dark current (Linear with dose)
- 2. Loss of single-photoelectron detection capability

Figure of merit on SiPM are:
1. Lowering of dark current
2. Goodness of p.e. spectrum⁷ and resolution

Neutron sources

BNL Phenix detector IR region Primarily radiation Neutrons: 10-20 MeV Thermo Scientific MP 320 Portable Neutron Generator Deuterium-Tritium tube. Neutrons: 14 MeV (flux 10⁵ neutrons/cm²/sec)

All SiPMs are irradiated at room temperature

IV measurement setup

Expermental: reverse IV characterization

<u>Experimental</u>: Photo-response time-gated single-photoelectron spectrum

HPK 513360 3600 pixels

<u>SiPMs</u>

HPK S12572-25P 14400 pixels FBK HD-LF 4x(3x3) mm 4x6367 pixels

Experimental

1. Evaluate <u>before irradiation</u> room & cold: IV & PNR

- 2. Neutron irradiation room/LN2, unbias
- 3. Evaluate <u>after irradiation</u> room & cold: IV & PNR
- 4. Thermal anneal ~250°C, bias +10mA
- 5. Evaluate <u>after annealing</u> room & cold

-IV plot: V_{bd} temperature dependence

Temp. coefficient				
HPK	~54 mV/°K			
FBK	~27 mV/°K			

V_{breakdown} strongly dependent on temperature

dark current \downarrow , restore PNR no significant change in PDE (on this batch)

no significant change in PDE (on this batch)

room temperature IV

5

All

£

£

All

to n ■ 402.2222 ns

to n ■ 400.7100

FBK VUV-HD LF 3x3 mm²

No change in breakdown voltage

No significant change in $V_{breakdown}$ until ~10¹² n/cm²

Summary: reverse I-V

PNR recovered after annealing SiPM performs⁷ better in cold !

Temp. dependence: PNR capability

after neutron irradiation & thermal annealing sample #441 Dose: 10^9 n/cm^2

85K

Good photoelectron spectrum can be recovered at room temperature

Temp. dependence: PNR capability

after neutron irradiation & thermal annealing sample #442 Dose: 10¹⁰ n/cm²

Good photoelectron spectrum can be recovered with moderate cooling !

Temp. dependence: PNR capability

after neutron irradiation & thermal annealing sample #9 Dose: $10^{12} n/cm^2$

Good photoelectron spectrum can be recovered with deep cooling !

<u>Temperature dep. of dark current</u>

- I_{dark} (before) drops 1-decade/80°K
 I_{dark} (neutron) drops 1-decade/57°K

(neutron) has a fundamentally different activation energy **I**_{dark}

<u>Temperature dep. of dark current - Arrhenius plot</u>

I_{dark} (neutron) has a fundamentally different activation energy

Qualitative: annealing time

24

Neutron irradiation in LN_2 – unbias

BNL14 MeV neutron source (flux 10⁵ neutrons/cm²/sec)

HPK S13360-3050XPE

s/n	V _{op}	Ι _d (μΑ)	Ionization Radiation	
62432	55.64	0.15	7.2x10 ⁹ n/cm ²	room
62433	55.60	0.151	7.2x10 ⁹ n/cm ²	room
62434	55.48	0.148	3.8x10 ⁹ n/cm ²	LN2
62435	55.49	0.14	3.8x10 ⁹ n/cm ²	LN2
62448	55.37	0.157	3.8x10 ⁹ n/cm ²	room
62449	55.37	0.138	control	
high dose 7.2x10 ⁹ n/cm ²		low dose 3.8x10 ⁹ n/cm ²		
62432 room		62434 LN2		
62433 room		62435 LN2		

62448 room⁷⁷

SiPMs irradiated in LN_2

I-V before & after neutron irradiation & thermal annealing $3.8 \times 10^9 \text{ n/cm}^2$

no radiation hardening when SiPMs are operated in cryogenic

- 1. At room temp. dark current increased by orders of magnitude with poor/no PNR.
- 2. In cold: dark current lowered. PNR power recovered.
- 3. Thermal annealing lower the dark current, restore the PNR capability for low dose SiPMs, but require moderate to deep cooling for higher dose SiPMs
- 4. Effectiveness of thermal annealing with forward bias is remarkable
- 5. Temperature dependence of I_{dark} (neutron) is fundamentally different than I_{dark} (intrinsic).
- 6. No difference if SiPMs are radiated at room or LN_2 temp.- no radiation hardening in cold.

Supplementary:

Measurement techniques

IV measurement setup

Technique: charge gain calibration

Inject known charge to calibrate preamp (with SiPM attached to preamp & biased)

signal amplitude voltage V_{27} photoelectron charge Q

Technique: charge gain measurements

- Gain measured from well resolved photoelectron peaks
- Breakdown voltage linearly extrapolated

Technique: time-correlated crosstalk

Attenuate to << 1-photon/pulse Determine 1-pe signal level Measure count rate at $\frac{1}{2}$ -pe & $1\frac{1}{2}$ -pe levels (20 ns gate)

$$crosstalk = \frac{count rate \frac{3}{2} - pe}{count rate \frac{1}{2} - pe}$$

Technique: Dark Count Rate (DCR)

Attenuate to << 1-photon/pulse Determine 1-pe signal level at every OV

DCR = count rate at $\frac{1}{2}$ -pe level (but in DARK)

PDE Exclusion of correlated noise (OCT & AP), measure charge pulse

PDE measurement flow chart

Apply bias

First data taking

Second data taking

n dark ped

n dark total

Third data taking

• Get n total

Calculate PDE

(with light input, long period)

Get ·

(with light input, short period)

(without light input, long period)

Determine comfortable light level for measurements

Exclusion of correlated noise (oct d Air), measure charge pulse
E measurement
w chart

$$PDE = \frac{\# pe}{\# hv} = QE(\lambda) \times F_{geo.} \times \varepsilon_{e-p}(\lambda, \Delta V)$$
Poisson Dist: $P_{n,ph}(x,\kappa) = \frac{\kappa^n e^{-\kappa}}{n!}$
Poisson distribution
fit to K=1.5 pe

$$\frac{n}{ped}$$
Second data taking
(withou light input, long period)
 \cdot Get $\frac{n}{ped}$

0.0

Al

charge signal voltage (volt)

-1.0

-1.5

The Poisson distribution is a good estimate on the average # of pe

-0.5

ternative;
$$n_{pe} = -\ln\left(\frac{N_{ped}}{N_{total}}\right) + \ln\left(\frac{N_{ped}^{dark}}{N_{total}^{dark}}\right)$$
 35

HPK Tech note