Commissioning of VUV-MPPCs for MEG II Liquid Xenon Detector

Core-to-Core Program

W. Ootani ICEPP, The University of Tokyo

International Conference on the Advancement of Silicon Photomultipliers Jun. 11th-15th, 2018, Schwetzingen, Germany

• MEG II **Experiment** Upgrade of LXe **Photon** Detector Construction Commissioning status Summary and **Prospects**

MEG II Experiment

- Experimental search for lepton flavour violating decay μ+→e+γ as an unambiguous evidence of BSM physics
 - Current bound: B(µ+→e+γ) < 4.2×10⁻¹³ (90%C.L.) (MEG in 2016)
 - MEG upgrade (MEG II) with a projected sensitivity of 6×10⁻¹⁴ in preparation.

MEG II detectors with significantly improved performance

- Much higher resolutions and efficiencies for both photon and positron detectors
- Twice or higher μ intensity, fully exploiting world's most intense DC μ -beam at PSI up to ~10^8 μ^+ beam

MEG LXe Photon Detector

 • 900ℓ LXe (~2.7ton) scintillation detector to measure 52.8MeV-photon from µ→eγ

LXe as a detector medium

- High stopping power X₀ = 2.77cm
- High light yield 75% of Nal(TI)
- Fast (τ =45ns for e/ γ)

LXe scintillation light readout by photosensors surrounding LXe active volume

MEG: PMT(×846)

→MEG II: SiPM(×4092) + PMT(×668)

Reconstruction

- Energy: sum of SiPM/PMT charges
- Position: SiPM/PMT charge distribution
- Time: average SiPM/PMT time

• All channels are readout by waveform digitiser.

- Pileup reduction
- Particle ID

LXe Detector Upgrade for MEG II

Highly granular scintillation readout

- 216 × PMTs(2-inch) on γ-entrance face are replaced with 4092 × MPPCs (139mm² each)
- γ-entrance face (0.92m²) covered by total active sensor area of 0.57m²
- Energy and position resolutions will be improved by a factor of two.
- γ-detection efficiency will also be improved by ~10% because MPPC is much thinner than PMT.
- Modified PMT layout for better response to acceptance edge events

VUV-sensitive MPPC

- VUV-sensitive MPPC developed for MEG II in collaboration with Hamamatsu Photonics K.K.
- Model S10943-4372
 - Active area: 139mm²
 - Discrete array of four independent sensor chips (5.95×5.85mm² each)
 - 50µm pixel pitch
 - Metal quench resistor LXe temp~165K)
 - PDE > 15% for LXe se
 - Gain > 5×10⁵ (four chi
 - Low cross talk / low a
 - Operational with over

Hamamatsu S10943-4372

Quartz window (0.5 mm^t)

PDE

• PDE measured in a small laboratory setup in LXe

 Am-241 spot α-source on W-wire (φ100um, gold-plated) as a fixed spot light source

PDE = (measured # of photoelectrons)/(expected # of photons)

 Uncertainty in estimation of expected # of photons impinging MPPC (W_{ph}, gain, cross-talk, after-pulsing, effect of reflection)

• PDE > 15%

Angular Dependence of PDE

- Correct knowledge of angular dependence of PDE is required especially for position reconstruction
- Angular dependence of PDE was measured in a dedicated setup with gaseous Xe at room temp
 - Larger than expected from Fresnel reflection
 - Consistent result obtained observed also in LXe with the detector, but still with larger uncertainty

• For VUV light, charge carrier is generated in contact layer within 5nm from top surface

• Very thin dead layer in contact layer could cause additional angular dependence

Angular Dependence of PDE

- Correct knowledge of angular dependence of PDE is required especially for position reconstruction
- Angular dependence of PDE was measured in a dedicated setup with gaseous Xe at room temp
 - Larger than expected from Fresnel reflection
 - Consistent result obtained observed also in LXe with the detector, but still with larger uncertainty

For VUV light, charge carrier is generated in contact layer within 5nm from top surface

Construction

Construction completed

→ Detector now in commissioning phase

Cabling for ~5000 sensors is not an easy task...

Cryogenics/vacuum piping

Installed in PSI πE5 W.Ootani, "Commissioning of VUV-MPPCs for MEG II LXe Detector", International Conference on the Advancement of Silicon Photomultipliers 9

Commissioning

Detector commissioning in progress

- System check
- LXe transfer to detector vessel
- LXe purification
- Photosensor calibration
- Detector calibration

Not quite ready for full commissioning

- Limited number of readout electronics channels. Full electronics will be ready in 2019
- Suffering higher noise than expected after installed in beam area. Still under investigation

MPPC Alignment

- Precise alignment of MPPCs is crucial because of significantly improved position resolution down to a few mm
 - Target alignment precision <0.5mm

Multiple redundant methods

- 3D survey with 3D-camera and laser tracker at room temp.
- Position sensor to measure displacement/deformation of inner LXe vessel
- X-ray survey to measure sensor position in LXe from outside detector vessel

X-ray Survey

• 2D-positions (z & Φ) of MPPCs in LXe are directly measured with collimated X-ray

- MPPCs are scanned by slit beam of 2×30mm² at MPPC
- Scan in two directions (Z & Φ)

X-ray Survey

Preliminary results from first measurement

- Clear rate variation for each scanned MPPC
- MPPC position extracted from rate distribution

Validation by checking intervals of MPPCs mounted on the same PCB slab

- Expected: 15.07mm (tolerance within ±0.05mm)
- Measured: 15.05±0.01mm (mean)
 - Consistent with expectation
 - Resolution estimated as 0.4mm, meeting the requirement

Detailed analysis in progress to extract all MPPC positions

MPPC mounted on PCB slab

Calibration/Monitoring

Various calibration/monitoring methods employed in LXe detector

- LED: visible photon
- Alpha source (241Am spots on W-wire): 5.5MeV-α
 - As a spot light source with constant intensity \rightarrow abs. calib. of photosensor eff.
 - Easily discriminated from γ-ray events with pulse shape (ex. charge/amplitude)
- Cosmic ray: ≤O(GeV)
- Charge Exchange (CEX): $\pi^- p \rightarrow \pi^0 n$, $\pi^0 \rightarrow \gamma \gamma$ (55, 83, 129MeV - γ)
- Cockcroft-Walton proton accelerator: ⁷Li(p,γ)⁸Be (14.8, 17.6MeV- γ), ¹¹B(p,γ)¹²C(4.4, 11.6, 16.1MeV-γ)
- AmBe source: 4.4MeV-γ
- Neutron generator: ⁵⁸Ni(n,γ)⁵⁹Ni (9MeV-γ)

α/γ discrimination by pulse shape

calik

ensor

²hotos

Photosensor Calibration

Signal check

- MPPC: dead (9ch)
- PMT dead(9ch), unstable(6ch)
 - →Effect on detector performance expected to be negligible (at least for MPPC)

Photosensor calibration, with more attention on MPPC

- Gain
- PDE

Dead channel map

Noise

Currently, the most crucial issue is "noise"

- Current noise level is larger than expected from lab. measurement
- Low frequency noise (~O(MHz)), which is coherent over the readout channels (for both MPPC and PMT)
- Coherent noise will directly influence the detector performance
- Need to reduce by a factor of 2-4 to reach ~1% level energy resolution

ess to reduce noise

solution

oise source

hat significant part of the noise comes from new readout electronics J for both hardware and software

by coverage)

Coherent low-freq. noise in sum waveform for MPPC

with noise filters

Modified waveDREAM board

se.

Gain calibration using LED

- Single photoelectron charge for low-level LED light
- Average gain: 8×10⁵ at over-voltage of 7V
- Sensor-by-sensor variation at same over-voltage: 5%

Long term stability

 Observed slight variation, which is consistent with variation of LXe temperature

Correlated Noise

Correlated noise measured from spectrum with low intensity LED light

- Production lot dependence observed
- Need careful calibration/correction

Photon Detection Efficiency (PDE)

• MPPC PDE measured using α-spot source (Am-241)

- PDE = (measured # of photoelectrons)/(expected # of photons)
- Average PDE of 18% at over-voltage of 7V (preliminary, incl. CT and AP)
 - Lower than lab. measurement, probably due to non-optimal light yield and/or analysis parameters

First Observation of ~50MeV Photons

- Background photons near signal energy (~50MeV) from radiative muon decays successfully observed
 - Not ready for serious reconstruction due to the limited number of readout electronics channels (~25%) and unexpectedly larger noise
 - Significant improvement of imaging performance is obvious just from event displays

First Observation of ~50MeV Photons

- Background photons near signal energy (~50MeV) from radiative muon decays successfully observed
 - Not ready for serious reconstruction due to the limited number of readout electronics channels (~25%) and unexpectedly larger noise
 - Significant improvement of imaging performance is obvious just from event displays

Pileup Photon

 Pileup photon can also be clearly resolved thanks to higher granularity

Summary and Perspectives

- Significantly improved performance of MEG LXe photon detector with high-granularity scintillation readout by VUV-MPPCs
- Detector construction completed and commissioning is in progress.
 - Calibration of VUV-MPPCs
 - Gain, PDE, correlated noise, alignment,...
 - Larger noise than expected. Under investigation.
 - First observation of photon around signal energy (~50MeV) at in-beam test at full μ -beam intensity
- The detector has just been filled with LXe again after PSI accelerator shutdown
 - First thermal cycle. VUV-MPPCs can survive?
- Detector calibration with monochromatic photon around signal energies planned this year, but full detector calibration will be done in 2019 after delivery of full readout electronics
- Production of MEG II physics data will start in 2019

International Conference on New Photo-detectors (PD18)

Nov 27th-29th, 2018, University of Tokyo, Tokyo, Japan

- * The 5th in a series of PD conference
 - PD07@Kobe, Japan; PD09@Matsumoto, Japan; PhotoDet12@Orsay, France, PhotoDet15@Moscow, Russia
- * Scope
 - Recent progress and new ideas on photodetectors (SiPM, APD, PMT,...)
 - Readout techniques
 - Applications

First bulletin will come soon. Please mark it on your calendar!

Thank you for your attention!