Application of SiPMs and MCP-PMTs in the PANDA PID detectors

A. Lehmann, for the PANDA TOF and Cherenkov subgroups

- PANDA PID detectors
- DIRC detectors and MCP-PMTs
- R&D for a high time resolution TOF detector with scintillator tiles (SciTils) and SiPMs
- Laboratory results with SciTils
- Test beam results with "MCP-TOF" counters
- Summary

PANDA Detector at FAIR

Albert Lehmann

PANDA PID Detectors

DIRC detectors

- Identification of hadrons (π , K, ...) from Cherenkov threshold to 4 GeV/c
- Detection of 20 100 single photons distributed across a large area
- Sensor requirements
 - >1 Tesla B-field immunity
 - <100 ps time resolution</p>
 - Low darkcount rate
- Barrel TOF detector
 - PID below β ≈ 0.68
 - Event timing
 - Small scintillating tiles
 - Sensor requirements
 - >1 Tesla B-field immunity
 - <<100 ps time resolution
 - Detection of multiple scintillation photons
 - \rightarrow darkcount rate not an issue

Albert Lehmann

ICASiPM -- Schwetzingen -- June 13, 2018

Barrel TOF (details see yesterday's talk by Ken Suzuki)

Sensors for DIRC-Detectors

Options

- Multi-anode PMTs ruled out by B-field
- Microchannel-plate (MCP) PMTs okay (but aging was a big problem)
- SiPMs problematic for darkcount and radiation hardness reasons
- Barrel DIRC (Detection of Internally Reflected Cherenkov light)
 - Few single photons distributed across a large area → SiPMs were never seriously considered because of their huge darkcount rates
 - MCP-PMTs showed serious aging problems up to a few years ago
 - Serious photo cathode damage caused by feedback ions from the residual gas
 - Solved in recent MCP-PMT models by an ALD coating of the MCP pores
 - Latest MCP-PMTs fulfill all sensor requirements

Endcap DIRC

- Single photons distributed across a smaller area → SiPMs might be applicable with narrow time window cuts → requires intelligent logic
- Tested Philips digital SiPMs

Philips Digital SiPMs for Endcap DIRC

- Fused silica radiator disc (2.1 m Ø; 4 independent sub-detectors)
 - 96 focusing elements (FEL) read out by MCP-PMTs or dSiPMs
- Philips Digital SiPM (DPC3200) bar Radiation hardness not sufficient Expected PANDA fluence: 10¹²/cm² 1 MeV n DCR after irradiation with 14 MeV protons 10⁹ p/cm² $0 \,\mathrm{p/cm^2}$ 50000 25000 50000 25000 10¹¹ p/cm² 10¹⁰ p/cm² Hz Hz 75000 50000 25000 50000 25000 75000 50000

MCP-PMT Lifetime Improvements

~2011: <0.2 C/cm² integrated anode charge (IAC) before destruction PANDA DIRCs need >5 C/cm² IAC for 10 years running

recently: huge lifetime improvements of MCP-PMTs with ALD coating **no Q.E. drop up to ~20 C/cm²** \rightarrow sensor of choice for both DIRCs Albert Lehmann

Scintillating Tiles for Barrel TOF

- First idea: 30x30x5 mm³ BC408 scintillating tiles (SciTils) read out by two (opposite) 3x3 mm² SiPMs
 - Turned out to be not the optimum solution in terms of time resolution and light collection

Main SciTil caveats:

- Many reflections in all directions before photons actually hit the SiPM \rightarrow only few "prompt" photons \rightarrow time resolution position dependent
- Best value: 82 ps time resolution close to SiPMs; area averaged ~130 ps

Laboratory Measurement Setup

Scintillating tiles/rods read out at opposite sides

- xy-position scans in 1 2 mm steps across scintillator surface
- Measure time difference (\rightarrow time resolution)
- Tested 3x3 mm² SiPMs from Hamamatsu, Ketek and SensL

Source: 1 mCi ⁹⁰Sr (1 mm aperture)

Trigger Scintillator: ~3 mm Ø from PS185

Albert Lehmann

Scintillating Rods for Barrel TOF

Advantages of scintillating rods (SciRods; e.g., 120x5x5 mm³):

- Read out at both scintillator ends with 3x3 mm² SiPMs
- Many photons are totally reflected along scintillator rod

 → good solid angle coverage for scintillation photons
- Photons travel similar distance to SiPMs → collected photons at SiPMs arrive within a short time window → many "prompt" photons

- 170 x 5 x 5 mm³
- 120 x 5 x 5 mm³
- 50 x 5 x 5 mm³
- 120 x 10 x 5 mm³
- 50 x 10 x 5 mm³
- 30 x 30 x 5 mm³

Results for (narrow) SciRods

Different-sized SciRods read out by two (opposite) 3x3 mm² SiPMs

Better time resolution (<<100 ps for BC420 scintillator) than for SciTils</p>

Time resolution significantly less position dependent

Albert Lehmann

Wide Scintillating Rods

Disadvantages of narrow SciRods; e.g., 120x5x5 mm³

- reduced active area because wrapping material requires space
- Better solution: wide SciRods (e.g., 120x30x5 mm³) read out by several SiPMs placed at opposite sides
 - Similar to MEG experiment at PSI
 - Serial connection \rightarrow lower capacitance \rightarrow 30% faster and 30% narrower signals
 - Better time resolution expected

Results for (wide) SciRods

Read out by 4 serially connected 3x3 mm² SiPMs at each side
 Again better time resolution (down to <50 ps for BC418 scintillator)
 Basically no position dependence of time resolution (better with Al-wrapping)

	BC420; $120 \times 30 \times 5 \text{ mm}^3$			BC418; $30 \times 30 \times 5 \text{ mm}^3$		
	Hamamatsu MPPC S12572-050P			KETEK SiPM PM3350TP-SB0		
wrapping	none	white paper	aluminum	none	white paper	aluminum
σ_t [ps]	83 ± 3	80 ± 2	76 ± 2	53 ± 2	48 ± 1	45 ± 1
pulse int. [chan]	658 ± 12	700 ± 15	743 ± 10	321 ± 8	420 ± 3	448 ± 1

SciTils/SciRods inside Testbeam

Identification of beam particles by TOF at CERN T9 beamline

- 2 10 GeV/c hadron-rich containing mainly protons, kaons, pions, and myons
- Two "MCP-TOF" stations, 29 m apart
- Each station contains
 - one 2-inch MCP-PMT
 - one SciTil (SciRod) read out left and right by 4 SiPMs
- \rightarrow 6 independent TOF combinations to determine individual time resolutions

MCP-TOF 1

MCP-TOF 2

MCP-TOF station consists of 2-inch MCP-PMT and wide SciRod

- PMMA radiator in front of MCP-PMT to produce Cherenkov radiation
- Opposite sides of SciRod read out by 4 serially connected Ketek SiPMs
 - Aluminum wrapped scintillators
 - x10 amplifier boxes (outside aluminum box) provide bias voltage and signal shaping
 - PADIWA/TRB DAQ from GSI

M. Böhm et al., JINST 11 (2016) C05018

MCP-TOF Results

- 4 counters of the MCP-TOF stations provide 6 independent ways to evaluate TOF differences for pions (peak 1) and protons (peak 2)
 - MCP1 MCP2 (MM); SciRod1 SciRod2 (SS); MCP1 SciRod1 (T1)
 - SciRod1 MCP2 (SM); MCP1 SciRod1 (MS); MCP2 SciRod2 (T2)

Determination of Time Resolutions

 $\sigma_{MM} = TOFres(MCP2 - MCP1)$ $\sigma_{M1} = TimeRes(MCP1)$ $\sigma_{ss} = TOFres(SciRod 2 - SciRod 1)$ $\sigma_{SM} = TOFres(MCP 2 - SciRod 1)$ $\sigma_{MS} = TOFres(SciRod 2 - MCP 1)$ $\sigma_{T1} = TOFres(MCP1 - SciRod1)$ $\sigma_{\tau_2} = TOFres(MCP2 - SciRod2)$

$$\sigma_{MM}^{2} = \sigma_{M1}^{2} + \sigma_{M2}^{2} + \sigma_{beam}^{2}$$

$$\sigma_{SS}^{2} = \sigma_{S1}^{2} + \sigma_{S2}^{2} + \sigma_{beam}^{2}$$

$$\sigma_{MS}^{2} = \sigma_{M1}^{2} + \sigma_{S2}^{2} + \sigma_{beam}^{2}$$

$$\sigma_{SM}^{2} = \sigma_{S1}^{2} + \sigma_{M2}^{2} + \sigma_{beam}^{2}$$

$$\sigma_{T1}^{2} = \sigma_{M1}^{2} + \sigma_{S1}^{2}$$

$$\sigma_{T2}^{2} = \sigma_{M2}^{2} + \sigma_{S2}^{2}$$

$$\sigma_{M2} = TimeRes(MCP2)$$

$$\sigma_{S1} = TimeRes(SciRod 1)$$

$$\sigma_{S2} = TimeRes(SciRod 2)$$

Fit of 5 parameters to 6 equations \rightarrow time resolution for each counter

Counter Time Resolutions

- Fitted resolutions obtained for pions and protons from 2 10 GeV/c
- Long run (~3 weeks) under beam conditions \rightarrow stable behavior

- SiPMs currently not (yet) suitable for single photon detection in RICH/DIRC applications with only few photons distributed across a large area → MCP-PMTs is a better choice
- SiPMs are very good sensors for applications where many photons are expected, e.g. TOF detectors
- Best time resolutions were obtained with wide scintillating rods (SciRods) read out by serially connected SiPMs
- SciRod time resolutions obtained in the laboratory: <50 ps</p>
- SciRod time resolutions obtained under running conditions in a real test experiment at CERN: 55 – 70 ps
- SiPMs are excellent sensors for multiple photon detection, but for single photons MCP-PMTs are a serious alternative now