

Simulation of SiPM Noise

Johannes Breuer on behalf of nuisance parameters topical group ICASiPM, June 2018

Overview

- Simple Monte Carlo model of dark noise
 → Dark pulses (time / amplitude of pulses)
 - \rightarrow Waveforms
- Simulated data can be fed into waveform analysis SW
 - \rightarrow Does analysis identify SiPM model parameters correctly?
 - \rightarrow What are the statistical and systematic errors?

Monte Carlo model Included effects

- Creation of primary dark pulses (Poisson-distributed time intervals)
- Creation of secondary pulses

 (prompt / delayed crosstalk, afterpulsing)
- Recovery of micro cells
- Convolution with SPE pulse shape
 → waveforms
- Electronic noise (white noise)
- Band pass filter

Monte Carlo model

Parameters

SiPM:

- Primary dark rate
- Afterpulsing
- Prompt crosstalk (*)
- Delayed crosstalk (*)
- Micro cell recovery time
- SPE amplitude
- Standard deviation of SPE amplitude
- Number of micro cells x/y

Afterpulsing:

- Probability
- Delay

Crosstalk:

Poisson lambda

 $P_{\lambda}(k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$

- Delay
- Range

Electronics:

- Pulse shape (bi-exp: rise/fall time)
- Noise amplitude
- Filter corner frequencies

Monte Carlo model Creation of primary and secondary pulses

Johannes Breuer | SHS DI MI PLM-R&D EU 9 Restricted © Siemens Healthcare GmbH, 2018

Monte Carlo model Example waveform and noise scatter plot

Waveform post-processing:

- Addition of Gaussian white noise
- Band pass filter

time interval (ns)

Testing waveform analysis

Testing waveform analysis

Omitting waveform step → allows faster processing

Note:

Nearby pulses must be consolidated into one

Johannes Breuer | SHS DI MI PLM-R&D EU 12 Restricted © Siemens Healthcare GmbH, 2018

Noise scatter plot analysis: Fit of distribution function → Get parameters back

Criterion for time intervals:

- First pulse must have 1 p.e. amp
- No pulse in last 250 ns before first pulse

SIEME

Healthinee

Noise scatter plot analysis: Fit of distribution function → Get parameters back

Restricted © Siemens Healthcare GmbH, 2018

SIEME

Healthin

Dark pulses

$$p_{dp}(t) = \frac{1}{\tau_{dp}} \cdot e^{-t/\tau_{dp}}$$

 \rightarrow Needs to be corrected

Johannes Breuer | SHS DI MI PLM-R&D EU 16 Restricted © Siemens Healthcare GmbH, 2018

60

80

100

20

40

First arrival time for multiple Poisson processes

$$p_{(k=2)}(t_{first}) = p_a(t) \cdot \int_t^\infty p_b(t')dt' + p_b(t) \cdot \int_t^\infty p_a(t')dt' = \frac{2}{\tau} \cdot e^{-\frac{2\cdot t}{\tau}}$$
$$p_{(k)}(t_{first}) = \frac{k}{\tau} \cdot e^{-\frac{k \cdot t}{\tau}}$$

Johannes Breuer | SHS DI MI PLM-R&D EU 17 Restricted © Siemens Healthcare GmbH, 2018

Dark pulses

$$p_{dp}(t) = \frac{1}{\tau_{dp}} \cdot e^{-t/\tau_{dp}}$$

Afterpulsing

$$p_{ap}(t) = P_{ap} \cdot \frac{1}{\tau_{ap}} \cdot e^{-t/\tau_{ap}} \cdot P_{trig}(t) \cdot \frac{1 + \operatorname{erf}(v \cdot (t - T_{1/2}))}{2}$$

Overall 7 parameters:

τ_{dp} , $P_{ap}, \tau_{ap}, \nu, T_{1/2},$ λ , au_{dct}

 \rightarrow good initialization required

Delayed crosstalk

$$p_{dct}(t) = \frac{e^{-\lambda}}{\tau_{dct}} \cdot \sum_{k=1}^{k} \frac{\lambda^k}{(k-1)!} \cdot e^{-k \cdot t/\tau_{dct}}$$

First arrival for all 3 processes

$$p(t_{first}) = p_{dct}(t) \cdot \left(1 - \int_{0}^{t} p_{ap}(t')dt'\right) \cdot \left(1 - \int_{0}^{t} p_{dp}(t')dt'\right) + \left(1 - \int_{0}^{t} p_{dct}(t')dt'\right) \cdot p_{ap}(t) \cdot \left(1 - \int_{0}^{t} p_{dp}(t')dt'\right) \rightarrow \text{can be calculated numerically} + \left(1 - \int_{0}^{t} p_{dct}(t')dt'\right) \cdot \left(1 - \int_{0}^{t} p_{ap}(t')dt'\right) \cdot p_{dp}(t)$$

reuer | SHS DI MI PLM-R&D EU 18 Restricted © Siemens Healthcare GmbH, 2018

Example fit

afterpulsing (%)

All 7 parameters can be identified well.

> Delayed crosstalk and afterpulsing can be distinguished.

Johannes Breuer | SHS DI MI PLM-R&D EU 19 Restricted © Siemens Healthcare GmbH, 2018

		Simulation	Curve fit	Good match
Dark pulses	tau (ns)	500	499.7	
Afterpulsing	prob	0.2	0.22	All 7 parame
	tau (ns)	50	51.1	be identified
	50% recovery time (ns)	34.7	34.2	Deleved area
	V		0.43	Delayed cros
Delayed XT	lambda	0.2	0.21	be distinguis
	tau	10	9.98	
Prompt XT	lambda	0.2		
Translated	dark rate (Mcps)	2	2.00	
	prompt crosstalk (%)	18.1		
	delayed crosstalk (%)	18.1	19.1	

10.0

11.1

Example fit

		Simulation	Curve fit
Dark pulses	tau (ns)	500	494.8
Afterpulsing	prob	0.3	0.39
	tau (ns)	<mark>1</mark> 30	28.0
	50% recovery time (ns)	34.7	34.3
	V		0.31
Delayed XT	lambda	0.3	0.33
	tau	[¥] 20	18.9
Prompt XT	lambda	0.3	
Translated	dark rate (Mcps)	2	2.02
	prompt crosstalk (%)	25.9	
	delayed crosstalk (%)	25.9	27.8
	afterpulsing (%)	9.5	11.5

Still a reasonable match

However, differences show that the method can still be improved.

Johannes Breuer | SHS DI MI PLM-R&D EU 20 Restricted © Siemens Healthcare GmbH, 2018

Separation of pulses with very short time intervals Pulse undershoot subtraction

Development of an automatic procedure for the characterization of silicon photomultipliers

Claudio Piemonte, Alessandro Ferri, Alberto Gola, Antonino Picciotto, Tiziana Pro, Nicola Serra, Alessandro Tarolli and Nicola Zorzi 2012 IEEE NSS/MIC

> Johannes Breuer | SHS DI MI PLM-R&D EU **21** Restricted © Siemens Healthcare GmbH, 2018

Separation of pulses with very short time intervals Pulse undershoot subtraction

Johannes Breuer | SHS DI MI PLM-R&D EU 22 Restricted © Siemens Healthcare GmbH, 2018

SIEMENS

Healthinee

Separation of pulses with very short time intervals Pulse undershoot subtraction

SIEMEN

Healthinee

Summary and outlook

- Simple Monte Carlo model of dark noise (implemented in Python)
- Allows verification of waveform analysis and estimation of systematic errors

Next steps:

- Check analysis method with SiPMs of different designs / over-voltages
- Improvement of formulas
 - (e.g. reduced triggering probability in afterpulses must be considered)

Thank you for your attention!

Johannes Breuer | SHS DI MI PLM-R&D EU 25 Restricted © Siemens Healthcare GmbH, 2018

Monte Carlo model Why all seeds must be processed in temporal order

1

2

3

micro cells

SIEMENS

Healthinee

Effective afterpulsing decay function

$$p_{ap}(t) = P_{ap} \cdot \frac{1}{\tau_{ap}} \cdot e^{-t/\tau_{ap}} \cdot P_{trig}(t) \cdot \frac{1 + \operatorname{erf}(v \cdot (t - T_{1/2}))}{2} \qquad P_{trig}(t) = 1 - e^{-k \cdot V_{OV}} \left(\frac{1 - e^{-\frac{t}{\tau_{recov}}}}{2} \right)$$

$$P_{trig}(t) = P_{ap} \cdot \frac{1}{\tau_{ap}} \cdot e^{-t/\tau_{ap}} \cdot \left(1 - e^{-k \cdot V_{OV}\left(1 - e^{-\frac{t}{\tau_{recov}}}\right)}\right) = P'_{ap} \cdot \frac{1}{\tau'_{ap}} \cdot e^{-t/\tau'_{ap}}$$

Johannes Breuer | SHS DI MI PLM-R&D EU 27 Restricted © Siemens Healthcare GmbH, 2018