Lonization Profile Monitors at GSI Darmstadt, 22nd of November 2018 Peter Forck

Gesellschaft für Schwerionenforschnung (GSI)

machine

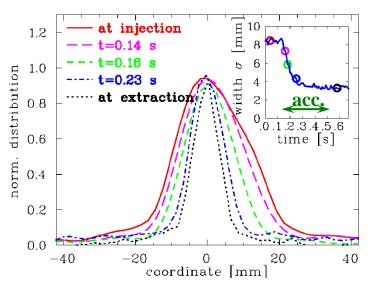
learning

1PMs at GSI

IPM development, realization, DAQ, simulation, analysis by: Tino Giacomini: Complete technical realization Mariusz Sapinski: Supervising code *Virtual-IPM*, experiences from CERN Rahul Singh: Experimental data analysis Dominik Vilsmeier: Complete work on *Virtual-IPM* Andreas Reiter, Timo Milosic & Thomas Sieber: CRYRING IPM BID-Group: Technical realization, DAQ Users & operators: Proposal for improvements

IPMs at GSI

Wish list for Profile Measurements


Ideal profile measurements at a synchrotron should fulfill: *Example:* Accel. at SIS18 for C⁶⁺

- Completely non-destructive for the beam
- Direct measurement to ensure reliability
- High spatial resolution e.g. $\approx \sigma_{beam}$ /5
- Emittance evaluation via $\sigma_{beam} = \sqrt{\varepsilon \cdot \beta}$ \geq
- High time resolution e.g. down to one turn of $\approx 1 \ \mu s$
- Reliable data reduction to display relevant information
- Online data presentation without time delay
- Easy-to-use GUI for operation \geq
- Available from accelerator commissioning to regular operation \geq

Outline of the talk:

- Principle of Ionization Profile Monitors IPM
- Technical realization at ESR, SIS18 and for FAIR \geq
- Some basic & advanced measurements
- \geq Requirements for magnetic field, realization at SIS18 and for SIS100
- Simulations for disturbing effects
- IPM at CRYRING and BIF at UNILAC
- Conclusion

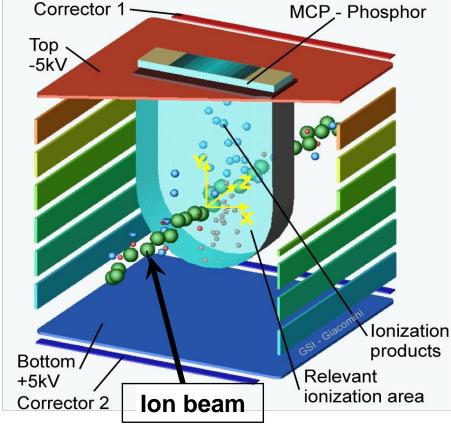
from $6.7 \rightarrow 600 \text{ MeV/u}$

Ionization Profile Monitor: Principle

Idea: Ionization of residual gas & spatial resolved detection

Detection scheme:

Secondary e⁻ or ions accelerated by E-field electrodes & side strips E≈ 50... 300 kV/m
⇒ '4π-detection scheme' for as ions or electrons
> Single particle detection


Typical vacuum pressure:

Transfer line: $p = 10^{-7}$ mbar $\Leftrightarrow \rho_{gas} = p/k_B T = 3 \cdot 10^9 \text{ cm}^{-3}$ Synchrotron: $p = 10^{-11}$ mbar $\Leftrightarrow \rho_{gas} = 3 \cdot 10^5 \text{ cm}^{-3}$

'Typical' beam density at SIS18:

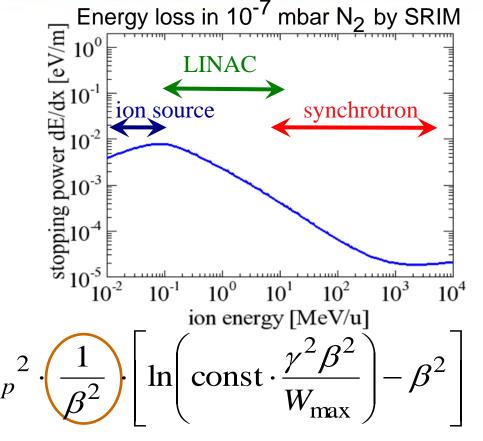
10¹⁰ ions, de-bunched, $\sigma_{beam} = 3 \text{ mm} \Rightarrow \rho_{beam} = 1.3 \cdot 10^6 \text{ cm}^{-3}$ (equivalent KV-distribution)

Expected Signal Strength for IPM and BIF-Monitor

Physics:

Energy loss of ions in gas dE/dx

⇒ Profile determination from residual gas➢ Ionization:


in average roughly $\approx 100 \text{ eV/ionization}$

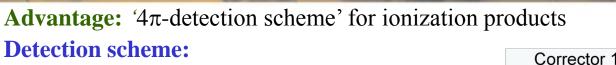
Ionization probability proportional to dE/dx by Bethe-Bloch formula:

$$-\frac{dE}{dx} = \operatorname{const}\left(\cdot \frac{\overline{Z_t \cdot \rho_t}}{A_t} \right) \cdot \overline{Z_p}$$

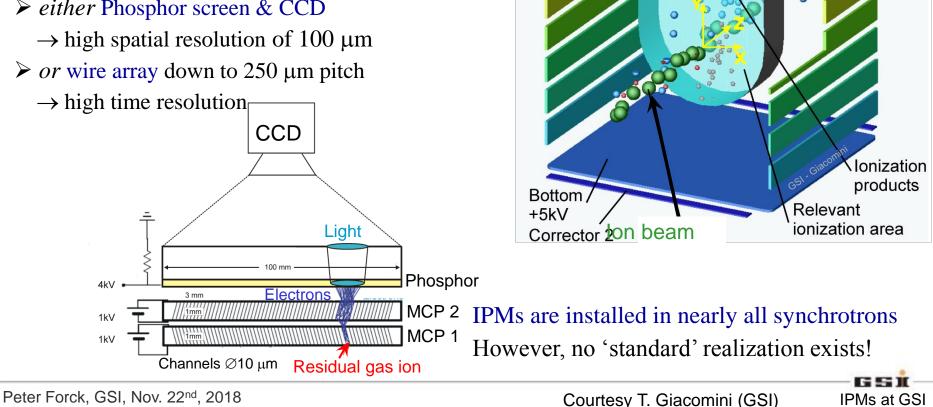
Target electron density: Proportional to vacuum pressure

 \Rightarrow Adaptation of signal strength

 $\propto 1/E_{kin}$ (for E_{kin} > 1GeV nearly constant)



Expected Signal Strength for IPM and BIF-Monitor


Energy loss in 10^{-7} mbar N₂ by SRIM **Physics:** stopping power dE/dx [eV/m] 10^{0} Energy loss of ions in gas dE/dx \Rightarrow Profile determination from residual gas \succ Ionization: 10⁻² in average roughly $\approx 100 \text{ eV/ionization}$ $^{1}\mathrm{H}$ Ionization probability proportional to 10 10^{-2} 10^{1} 10-1 10^{2} 10^{3} 10^{4} 10^{0} dE/dx by Bethe-Bloch formula: ion energy [MeV/u] $-\frac{dE}{dx} = \text{const}$ $\ln\left(\operatorname{const} \cdot \frac{\gamma^2 \beta^2}{W_{\max}}\right)$ $(Z_p^{-}$ Target electron density: $\propto 1/E_{kin}$ (for E_{kin} > 1GeV nearly constant) Proportional to vacuum pressure \Rightarrow Adaptation of signal strength Strong dependence on projectile charge for ions Z_n^2 Modification proton \leftrightarrow ions: $Z_p(E_{kin})$. Charge equilibrium is assumed for dE/dx

Peter Forck, GSI, Nov. 22nd, 2018

Ionization Profile Monitor: Principle

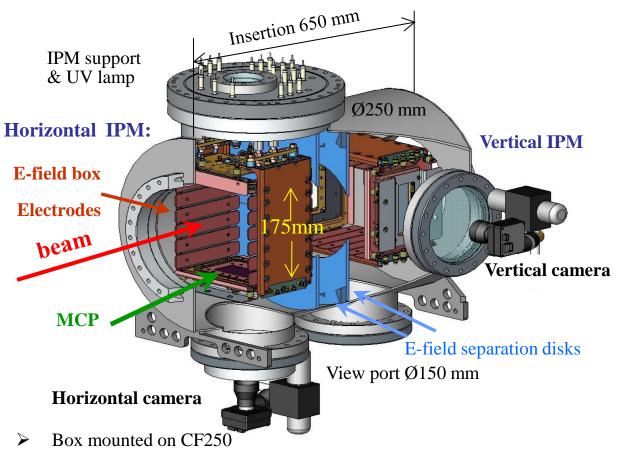
- \triangleright Secondary e⁻ or ions accelerated by E-field electrodes & side strips $E \approx 50...300 \text{ kV/m}$
- ➤ MCP (Micro Channel Plate) electron converter & 10⁶-fold amplifier
- either Phosphor screen & CCD
 - \rightarrow high spatial resolution of 100 µm
- \blacktriangleright or wire array down to 250 µm pitch

Top

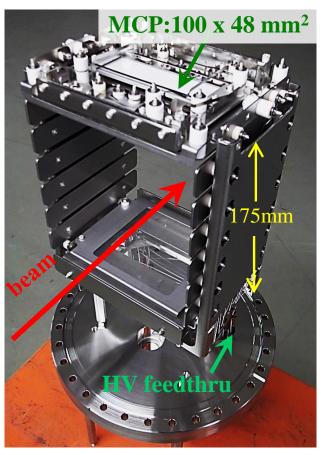
-5kV

MCP - Phosphor

Outline of the Talk


Outline of the talk:

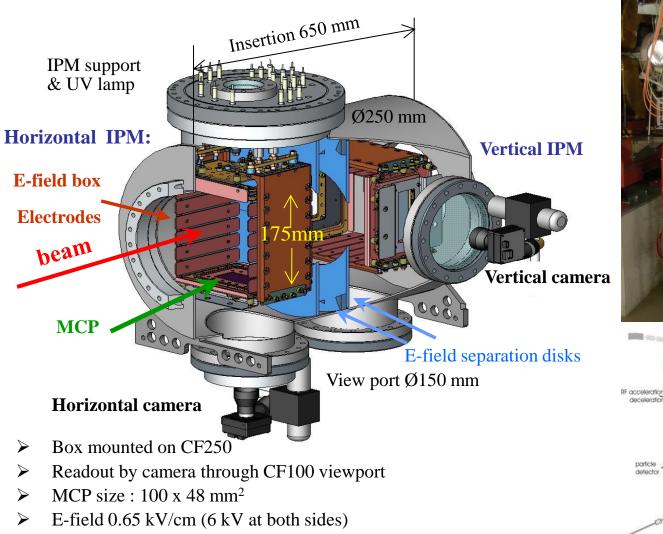
- Principle of Ionization Profile Monitors
- > Technical realization at ESR, SIS18 and for FAIR
- Some basic & advanced measurements
- Requirements for magnetic field, realization at SIS18
- Simulations for disturbing effects
- ➢ IPM at CRYRING and BIF at UNILAC
- Conclusion


FE 55 11

Ionization Profile Monitor Realization at ESR

The detector hardware at ESR:

- Readout by camera through CF100 viewport
- $\blacktriangleright \quad \text{MCP size} : 100 \text{ x } 48 \text{ mm}^2$
- E-field 0.65 kV/cm (6 kV at both sides)


Care: For low energies, significant kick to the beam

Courtesy T. Giacomini (GSI)

Ionization Profile Monitor Realization at ESR

The detector hardware at ESR:

Courtesy T. Giacomini (GSI)

Schottky pick-up

x-ray detectors

IPMs at GSI

particle detecto

RF acceleration

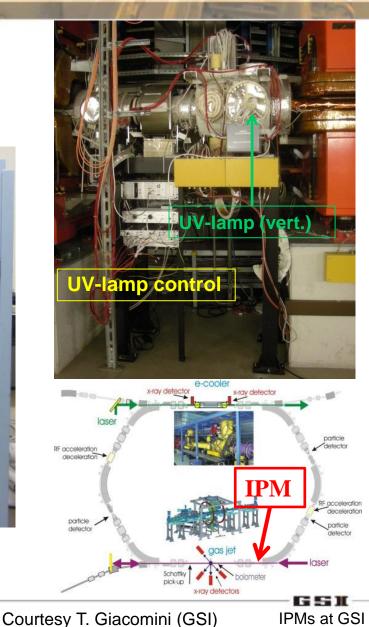
particle

ray detecto

IPM

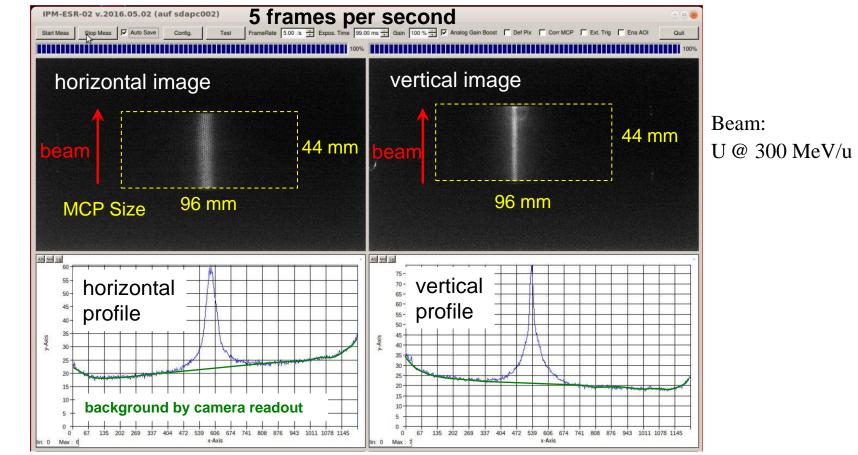
Ionization Profile Monitor Realization at ESR: DAQ

The DAQ realization at ESR at GSI:


- Camera with GigE IDS µEye (CMOS)
 typical readout rate 5 frames/s for online observation
- Digitalization in PC
- High voltage supplier
- Control of voltages, UV lamp

Front-end slow control & UV-lamp

PC with GigE card


HV power supplier

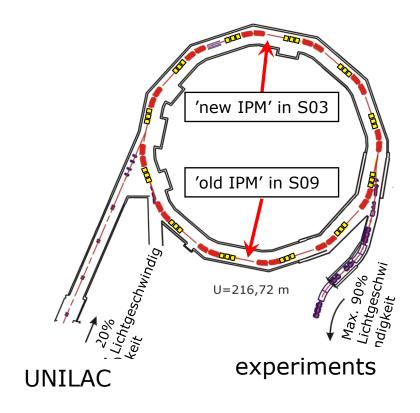
Ionization Profile Monitor Realization at ESR: Result

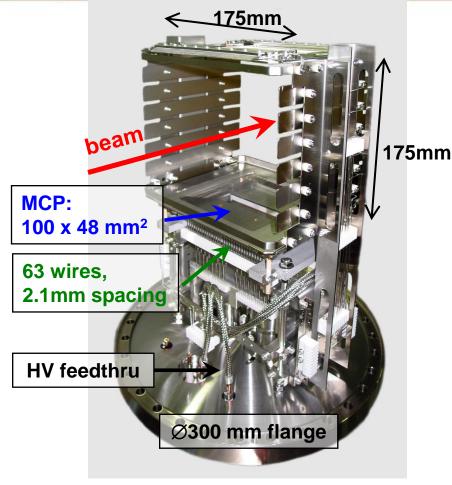
Camera readout, actual max. 8 frames/s, usage with typically 1 frame/s for cooling observation

- **Status:** > Hardware completely installed and tested
 - FESA DAQ started, but not GUI
 - Can be used for profile observation (slow readout) with Qt-based software

651

Ionization Profile Monitor at SIS18

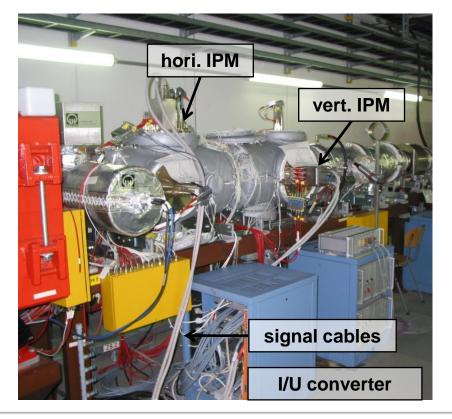


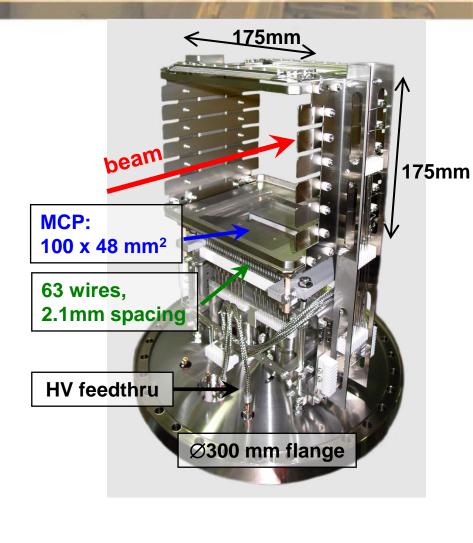

651

IPMs at GSI

The realization at SIS18, '**old** IPM' at S09:

Electric field: 0.68 kV/cm (6 kV both sides) MCP size: 100 x 48 mm² Wire array: Ø 0.6 mm wires, 2.1 mm pitch Electronic readout: I/U converters for each wire





Ionization Profile Monitor at SIS18

The realization at SIS18 '**old** IPM' in S09:

Electric field: 0.68 kV/cm (6 kV both sides) MCP size: 100 x 48 mm² Wire array: Ø 0.6 mm wires, 2.1 mm pitch Electronic readout: I/U converters for each wire

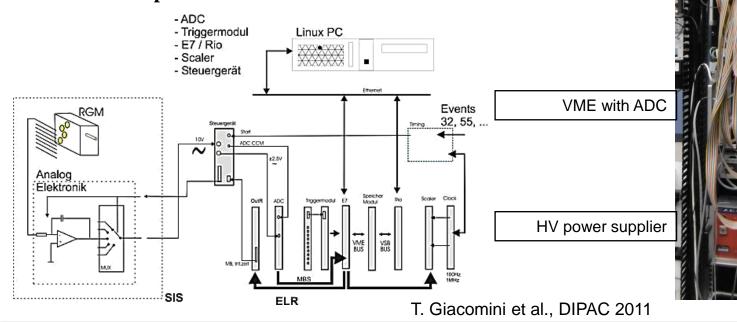
651

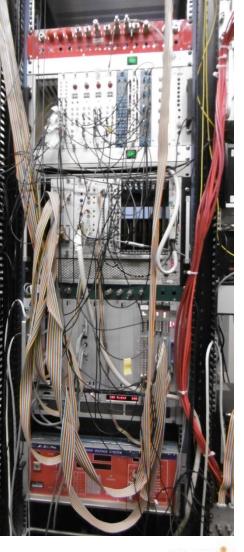
Ionization Profile Monitor at SIS18: DAQ

The realization at SIS18 '**old** IPM' in S09:

Electric field: 0.68 kV/cm (6 kV both sides)

MCP size: $100 \times 48 \text{ mm}^2$


Wire array: \emptyset 0.6 mm wires, 2.1 mm pitch


Electronic readout: I/U converters for each wire

Digitalization: VME ADC by (outdated) MBS

Readout performance: 100 profiles/s

- \Rightarrow stable operation with reasonable time resolution
- \Rightarrow but limited spatial resolution

651

IPMs at GSI

Peter Forck, GSI, Nov. 22nd, 2018

Courtesy T. Giacomini (GSI)

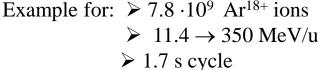
Timing

installed ≈15 years ago

Control of front-end I/U

Ionization Profile at SIS18: Control

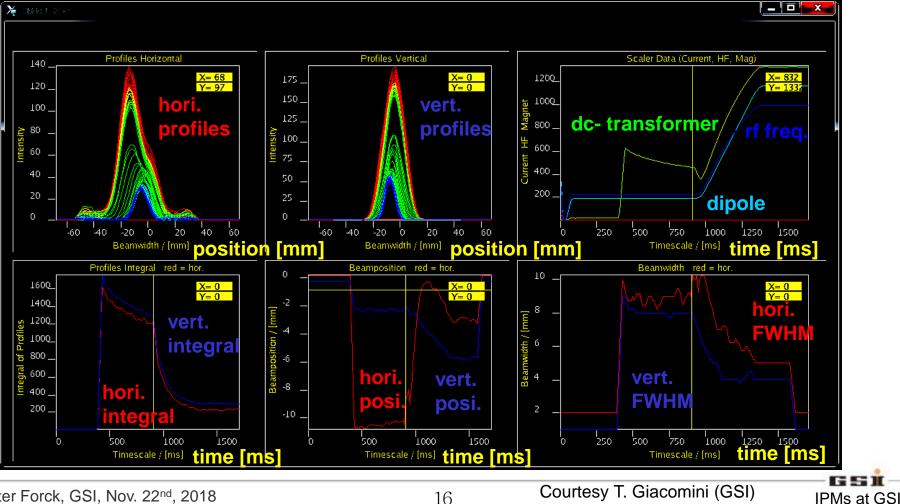
Electric field: 0.68 kV/c MCP size: 100 x 48 mm


Wire array: \emptyset 0.6 mm w Electronic readout: I/U d Digitalization: VME AD Readout performance: 1

alization of CIC10 (ald IDM/) in COO.	File Show Tools Test		CAEN_CONTROL (on BTPC56.acc	gsi.de)	
ealization at SIS18 ' old IPM' in S09:	NO CHANNEL	Select All ON-OFF	VOSET KOSET RAMP UP	RAMP DOWN TRIP VMON IMON	
ic field: 0.68 kV/cm (6 kV both sides)	0 Top +5kV	ON - OFF		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	× <<
size: $100 \times 48 \text{ mm}^2$	4 Bot - 5kV	ON-OFF		100 1 4 1 4978 14 300 1 4 1 4978 14	
	5 MCP Hor Back	ON - OFF	1790 🗘 200 🗘 100 🗘	[^] √ 200 [^] √ 4 [^] √ 1252 [^] √ 63	- UPDATE
array: \emptyset 0.6 mm wires, 2.1 mm pitch	6 MCP Ver Back	ON-OFF		↑ 200 ↑ 4 ↑ 1190 ↑ 60	UPDATE
onic readout: I/U converters for each wire	7 MCP Hor Front 16 MCP Ver Front			A 200 A A Y 1112 X 2 ↓ 200 ↓ 4 ↓ 1055 ↓ 29	UPDATE
	18 MCP Hor Holder	ON-OFF		↓ 200 ↓ 4 ↓ 1033 ↓ 29	UPDATE
lization: VME ADC by (outdated) MBS	19 MCP Ver Holder	ON - OFF	3600 × 200 × 100 ×	[^] √ 200 [^] √ 4 [^] √ 915 [^] √ 13	UPDATE
out performance: 100 profiles/s	L Auto Tr	ip Off	Load Parameter File	Save Parameter File OFF ALL Channel	
Karal RGM_SIS for GSI Beam Profile Measurement 2.1.1 File Settings Tools Help					
Parameter Control Plot		-MCP Amplification	on nc	-Beam Parameter	
					1
Accel. 10 Get Data Auto Get C Hor. + Vertical	±	ADC O	ver-Flow	Parameter Value	
			100 V +	lon 👱	
Event 41 Corr MCP	±	MCP Hor.	100 V –	Current	
Time O 5 ms AutoSave Data			+	Energy	
Slice: O,5 ms Slice: Start	40 1	MCP Ver.	100 V _	Cooling t	
Plot 2D Single Prof				Chopper t	
Range: 2nA/V 🛫 Plot 2D Single Prof	1 🗸	HV E-Field	HV MCPs	Tune Qx	
Graphs	1		┘└────┘││	Tune Qy	
Update Parameter	۲ ۲	Mos	asure	Text	
		IVI86			-

GSI

Ionization Profile at SIS18: Data Presentation


The GUI for SIS18 'old IPM'.

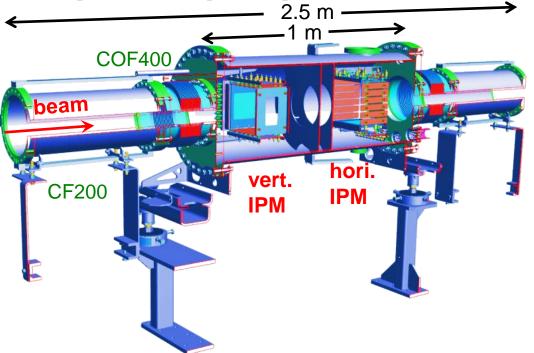
Status: > Operational since many years

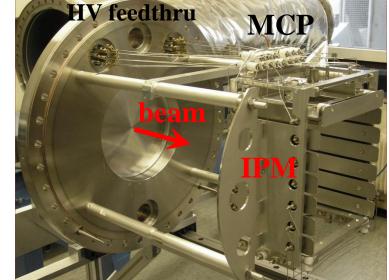
Presently some network problems for MBS

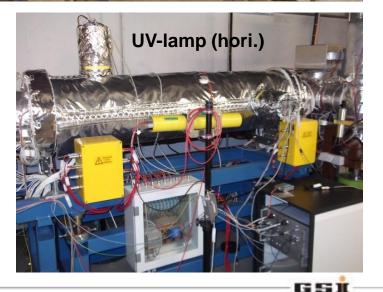
 \Rightarrow Can be used by operators

Peter Forck, GSI, Nov. 22nd, 2018

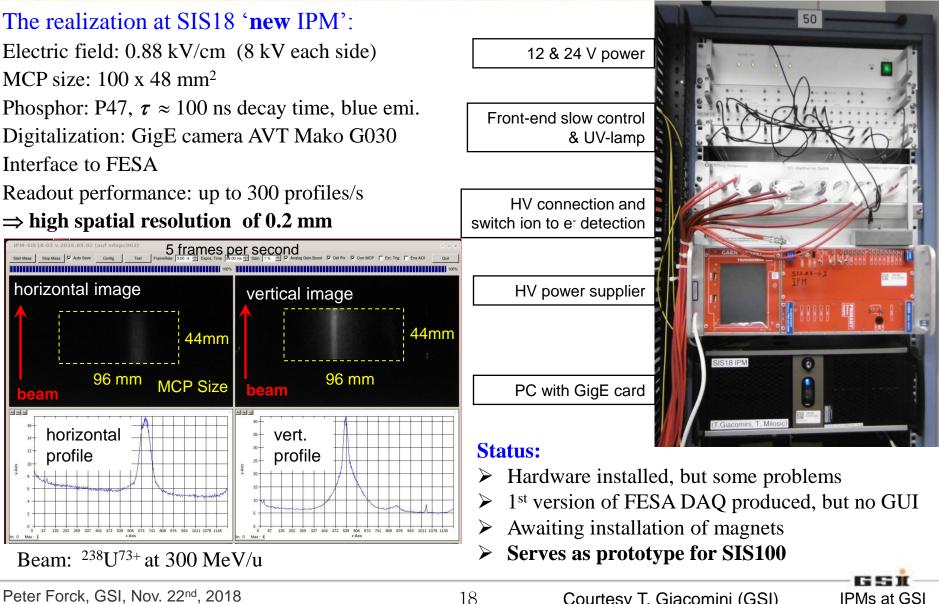
Ionization Profile Monitor Realization at SIS18 'new IPM'

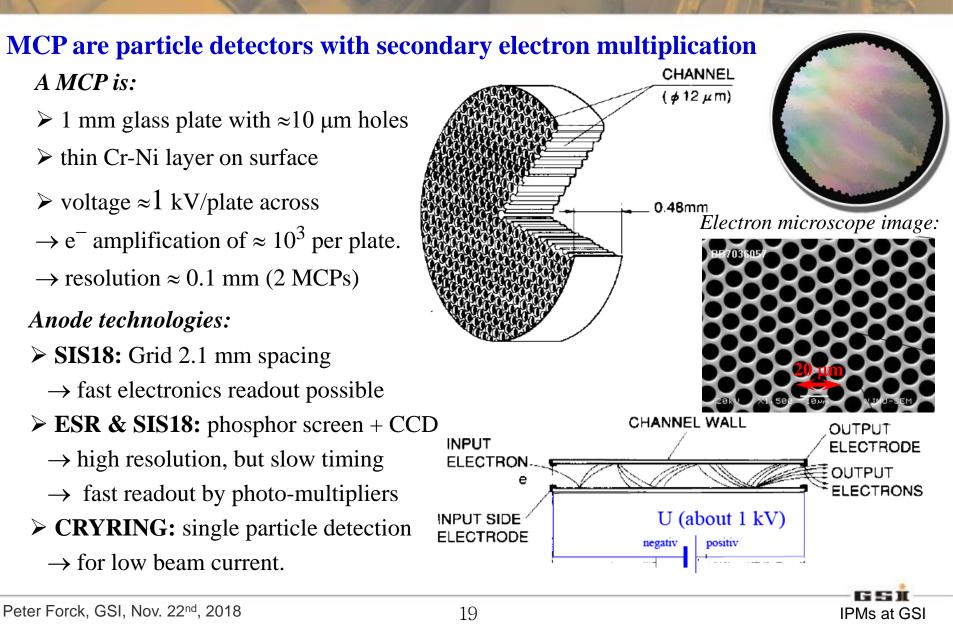

The realization at SIS18 '**new** IPM':


Electric field: 0.88 kV/cm (8 kV each side)


MCP size: 100 x 48 mm²

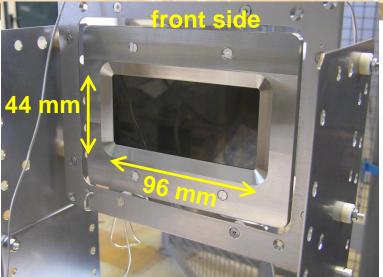
Phosphor: P47, $\tau \approx 100$ ns decay time, blue emission Digitalization: GigE camera AVT Mako G030 Interface to FESA

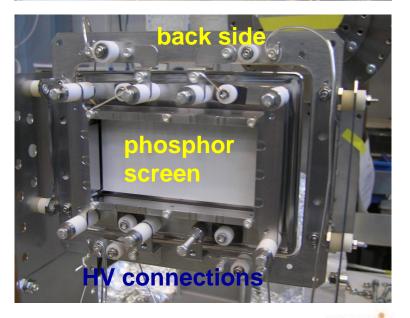

Readout performance: up to 300 profiles/s



Ionization Profile Monitor Realization at SIS18: DAQ

Multi Channel Plate MCP




IPM: Multi Channel Plate MCP for ESR & SIS18

MCP Module with Phosphor screen:

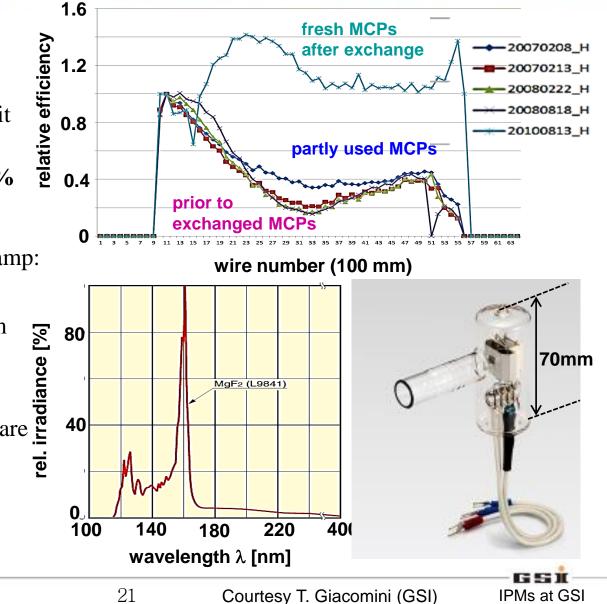
- $\succ \text{ Two MCPs } 100 \text{ x } 48 \text{ mm}^2$
 - \Rightarrow single particle detection
- > P47, ≈ 100 ns decay time
 - \Rightarrow turn-by-turn observation possible
- CMOS camera with GigE interface
- ➢ Future extension:

fast readout with photo-detectors Photomultiplier or solid state SiPMT

MCP Inhomogeneity & Aging

> MCP efficiency:

Inhomogeneity typically ±20 %
➤ 'MCP aging':

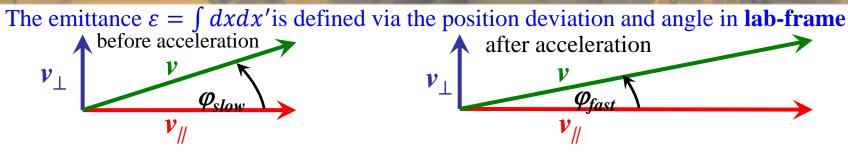

Destruction of coating at MCP exit by electron bombardment

 \rightarrow exchange when reaching 30 %

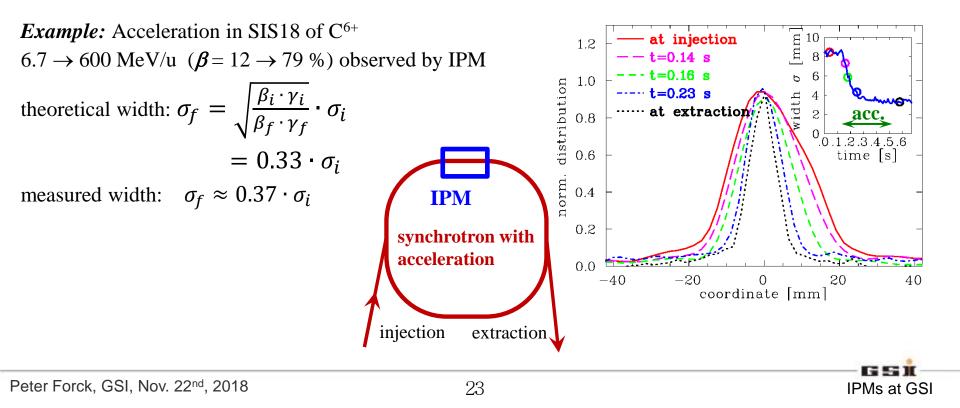
Cure \rightarrow **calibration**:

Check of inhomogeneity by UV-lamp:

- ➢ Hamamatsu L2D2 lamp, wavelength down to $\lambda = 115$ nm
- Mounted outside of vacuum
- Regular calibration
- \Rightarrow Efficiency correction via software

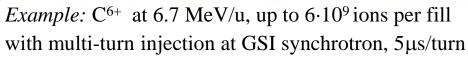

Outline of the Talk

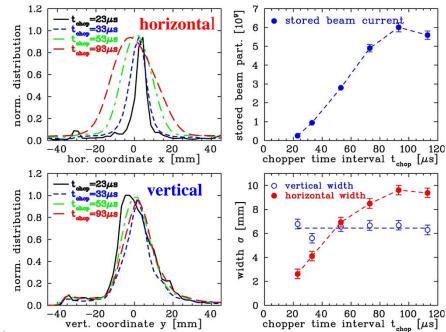
Outline of the talk:

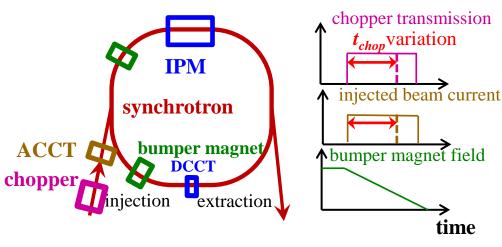

- Principle of Ionization Profile Monitors
- > Technical realization at ESR, SIS18 and for FAIR
- Some basic & advanced measurements
- Requirements for magnetic field, realization at SIS18
- Simulations for disturbing effects
- ➢ IPM at CRYRING and BIF at UNILAC
- Conclusion

FE 55 11

'Adiabatic' Damping during Acceleration


After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved (Lorentz factor γ & velocity $\beta = v_{\parallel}/c$)




Emittance 'Control' via Chopped Injection

For a multi-turn injection the emittance can be controlled by beam chopping Bumper magnet action:

- First beamlet injected on central path
- Successive filling of 'outer' phase space
- \Rightarrow stored horizontal emittance varies
- \Rightarrow vertical emittance un-changed
- \Rightarrow injected current increase for longer t_{chop}

Emittance Enlargement & hollow Beam by Injection Mis-steering

with multi-turn injection, IPM integration 0.5 ms i.e. ≈ 100 turns

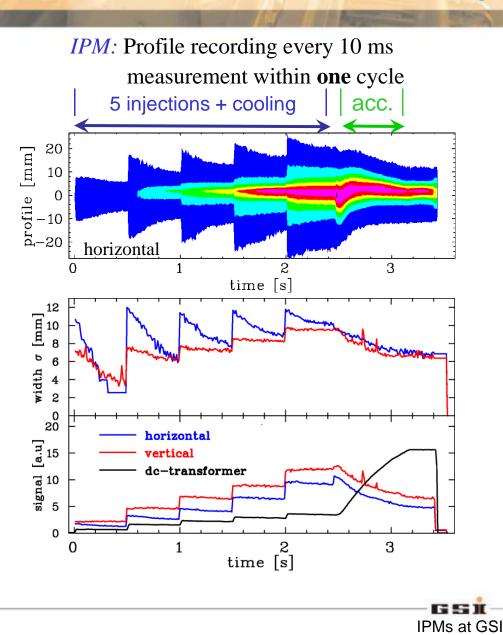
IPMs at GSI

Emittance conservation requires
precise injection matchingExample: Variation of vertical injection angle by magnetic steerer
Beam: C^{6+} at 6.7 MeV/u acc. to 600 MeV/u, up to 6.109 ions per fill

Wrong angle of injected beam:

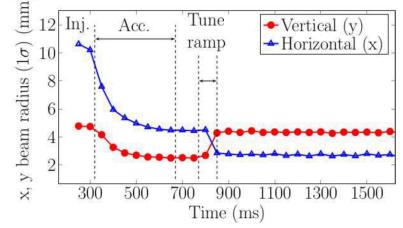
Horizontal profile at injection: Vertical profile at injection: ➢ injection into outer distribution phase space \rightarrow large distribution 1.2 1.0 1.0 β-amplitude i.e. large beam 0.8 0.8 \succ might result in 0.6 0.6 norm norm. 0.4 'hollow' beam 0.4 12 vertical 0.2 0.2 10 larger emittance after accel. 0.0 [ww] pefore 0.0 -20 -10 0-30 10 20 30 -30 -20 -10 0 10 20 30 vert. coordinate y [mm] 8 hor, coordinate x [mm] Ф Vertical profile **after** acc.: 66 Horizontal profile **after** acc.: width 1.4 distribution 2 distribution 1.2 1.2 0.39 after acc 1.0 1.0 -0.5 രര 0.5 0.8 0.8 steering value [arb.u.] 0.6 0.6 injection: norm. norm 0.4 0.4 angle **IPM** 0.2 0.2 mismatch 0.0 0.0 hor. coordinate x [mm] -100 20 -20-2010 synchrotron vert. coordinate y [mm] larger emittance misplace injection filamentation x'vertical Schematic simulation: steerer Courtesy M. Syphers injection extraction GSI

Peter Forck, GSI, Nov. 22nd, 2018


IPM: Observation of Cooling and Stacking

Example:

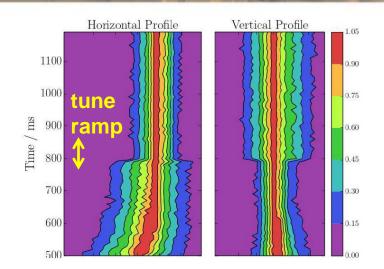
 U^{73+} beam at GSI for intensity increase stacking by *electron cooling* and acc. 11.4 \rightarrow 400 MeV/u


Task for IPM:

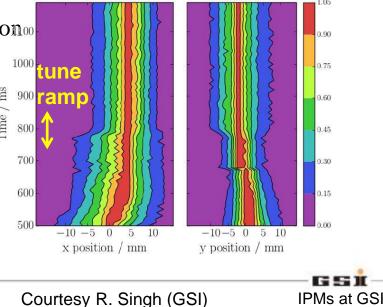
- Observation of cooling
- Emittance evaluation during cycle

Effect of horizontal-vertical Coupling Resonance

Horizontal \leftrightarrow vertical coupling if $Q_x = Q_y$ Example for tune crossing $Q_x = 4.16 \rightarrow 4.33$:

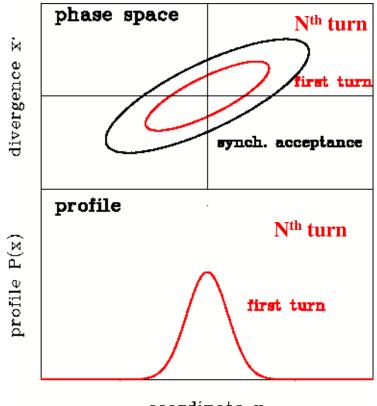


Beam: 10¹⁰ N⁷⁺ after acceleration, before slow extraction hori. $Q_x = 4.16 \rightarrow 4.33$ within 0.1s, vert: $Q_y = 3.29$ \Rightarrow coupling when $Q_x = Q_y$ Tune measurement by transverse Schottky spectrum


27

Partly compensation of coupling resonance with skew quadrupoles to control emittances

R. Singh et al., GSI-Annual Report 2014, p. 488


Compensation with skew quad.

Injection Matching into a Synchrotron: Phase Space Mismatch

Ideal case of injection matching:

Orientation of injected beam matches phase space as given by synchrotron Twiss parameters α , β , and γ i.e. 'machine emittance' \Leftrightarrow no change after each turn \Leftrightarrow stable storage

FE 55 11

IPMs at GSI

coordinate x

Injection Matching into a Synchrotron: Phase Space Mismatch

Ideal case of injection matching:

Orientation of injected beam matches phase space as given by synchrotron Twiss parameters α , β , and γ i.e. 'machine emittance' \Leftrightarrow no change after each turn \Leftrightarrow stable storage

<u>Mis</u>-matched case:

- The beam ellipse σ_{beam} has different orientation $\stackrel{*}{\exists}$ as machine ellipse at injection point for N=0 i.e.

i.e. rotation in phase space by the tune Depictive argument: Always particle on both ellipse Observable quantity: Beam profile oscillates

phase space second turn turn forth turn ergence synch. acceptance profile forth turn P(x)third turn first turn second turn

coordinate x

IPMs at GSI

After <u>many</u> turns:

Particle have different tunes e.g. by longitudinal momentum deviation and chromaticity $\frac{\Delta Q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0}$

 \Rightarrow Entire transverse phase space is filled i.e. beam with enlarged emittance


Injection Matching into a Synchrotron: Phase Space Mismatch

Mis-matched injection into a synchrotron:

Can be monitored by beam profile measurement:

Example: Injection of a 80 ns bunch of protons into CERN PS at 1.4 GeV/u (2.2 µs revolution time) Profile measurement by SEM-Grid

- Turn-by-turn profile variation related to tune \geq
- Used for improvement of injection parameters \geq

n = 1

n = 3

-10

n = 5

-10

position (mm)

0

position (mm)

0

position (mm)

10

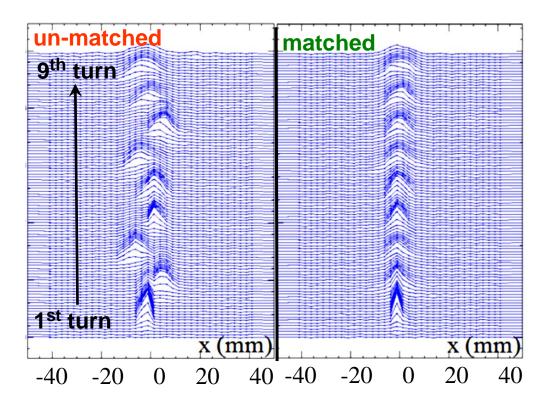
10

density

density

density

-20


-20

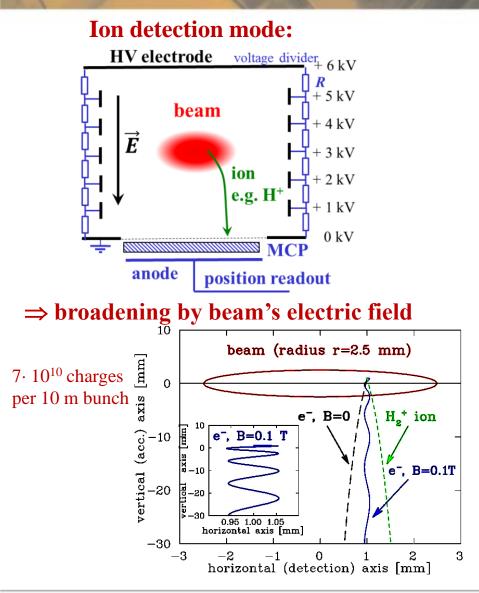
IPM: Turn-by-Turn Measurement

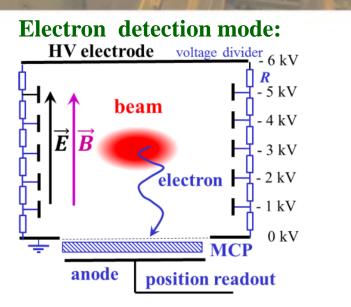
Important application:

➢ Injection matching
 to prevent for emittance enlargement
 ➢ Observation during 'bunch gymnastics'
 ⇒ turn-by-turn measurement
 Required time resolution ≈ 100 ns

Turn-by-turn IPMs at BNL, CERN, FNAL etc. Not realized at GSI yet but nice-to-have for SIS100! *Example*: Injection to J-PARC RCS at 0.4 GeV Anode: wire array with 1mm pitch

H. Hotchi (J-PARC), HB'08, A Satou (J-PARC) et al., EPAC'08


Outline of the Talk


Outline of the talk:

- Principle of Ionization Profile Monitors
- > Technical realization at ESR, SIS18 and for FAIR
- Some basic & advanced measurements
- > Requirements for magnetic field, realization at SIS18
- Simulations for disturbing effects
- ➢ IPM at CRYRING and BIF at UNILAC
- Conclusion

FE 55 11

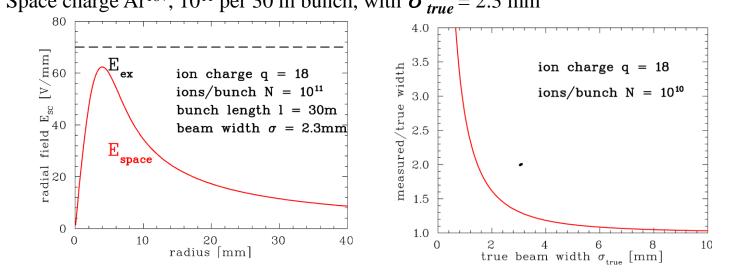
Electron Detection and Guidance by Magnetic Field

e⁻ detection in an external magnetic field \rightarrow cyclotron radius $r_C = \frac{mv_{\perp}}{eB}$ for $E_{kin,\perp} = 10 \text{ eV} \& B = 0.1 \text{ T} \Rightarrow r_c \approx 100 \text{ }\mu\text{m}$ E_{kin} from atomic physics, $\approx 100 \text{ }\mu\text{m}$ resolution of MCP

Time-of-flight: $\approx 1 - 2 \text{ ns} \Rightarrow 2 - 3 \text{ cycles.}$ **B-field**: Dipole with large aperture \rightarrow IPM is expensive & large device!

GSI

Broadening due to the Beam's Space Charge: Ion Detection


Influence of the residual gas ion trajectory by :

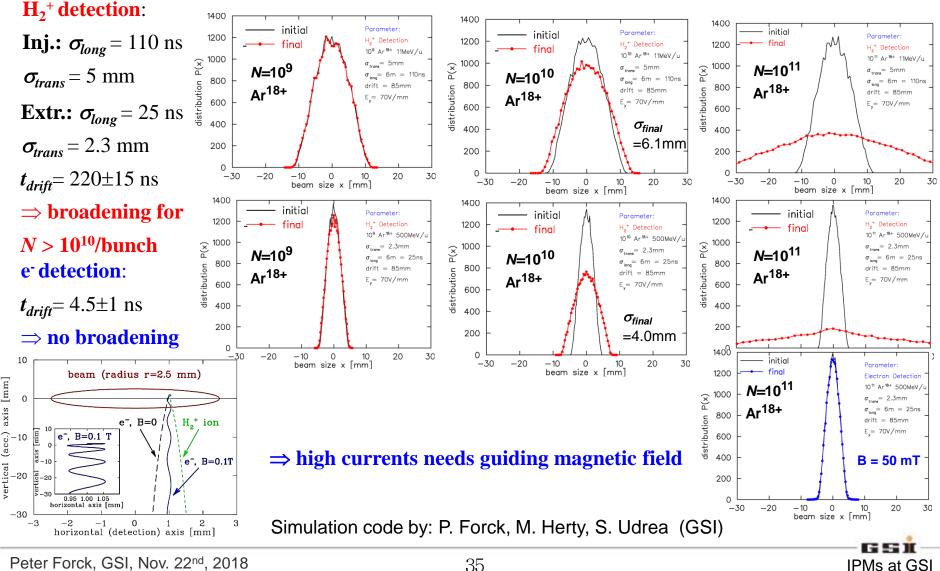
- \succ External electric field E_{ex}
- \succ Electric field of the beam's space charge E_{space}

e.g. Gaussian density distribution for round beam: $E_{space}(r) = \frac{1}{2\pi\varepsilon_0} \cdot \frac{qeN}{l} \cdot \frac{1}{r} \cdot \left[1 - \exp\left(-\frac{r^2}{2\sigma^2}\right)\right]$

Estimation of correction: $\sigma_{corr}^2 \approx \frac{e^2 \ln 2}{4\pi\varepsilon_0 \sqrt{m_p c^2}} \cdot \frac{qN}{l} \cdot d_{gap} \cdot \sqrt{\frac{1}{eU_{ex}}} \propto N \cdot d_{gap} \cdot \sqrt{\frac{1}{U_{ex}}}$

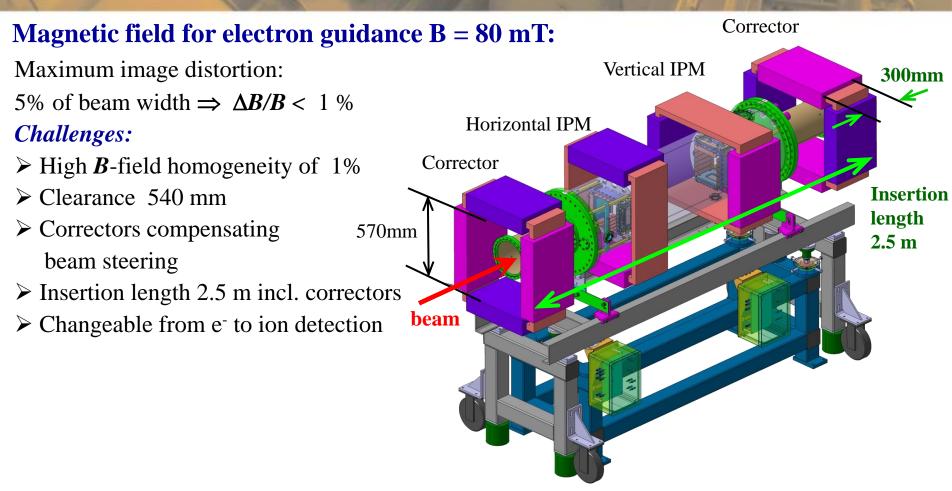
With the measured beam width is **roughly approximated** by convolution: $\sigma_{meas}^2 = \sigma_{true}^2 + \sigma_{corr}^2$

Example: Space charge Ar¹⁸⁺, 10¹¹ per 30 m bunch, with $\sigma_{true} = 2.3$ mm


34

GSI

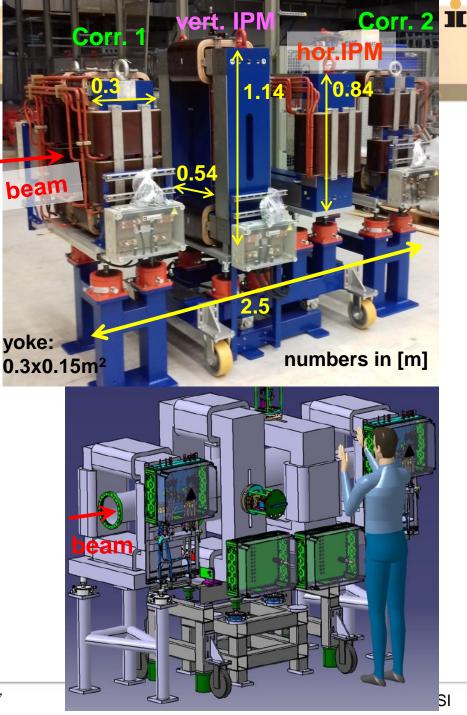
Example for Space Charge Broadening


Example for SIS18: 11 MeV/u \rightarrow 500 MeV/u with typical SIS18 parameters

Peter Forck, GSI, Nov. 22nd, 2018

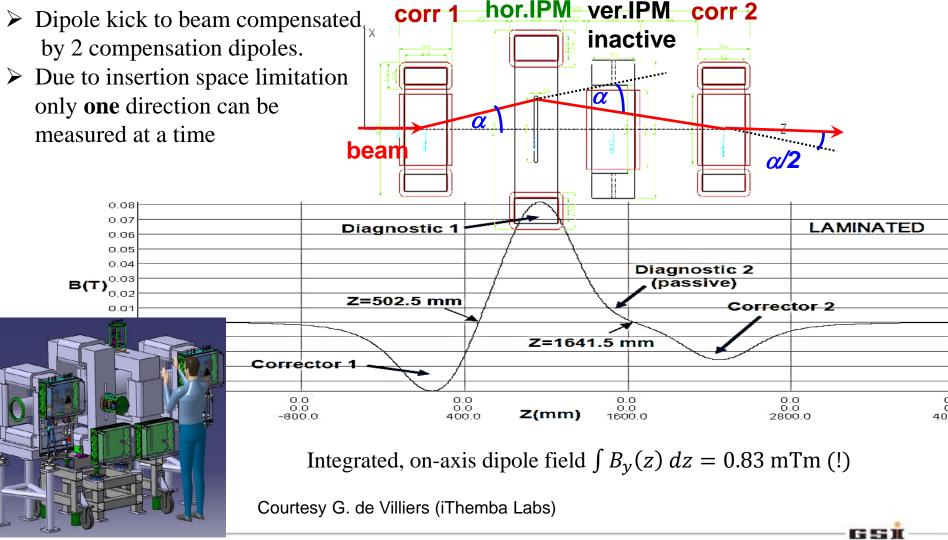
IPM Magnet Design for SIS18 & SIS100

IPM: Magnet Design


Magnetic field for electron guidance:

Maximum image distortion: 5% of beam width $\Rightarrow \Delta B/B < 1$ % *Challenges:*

- > High *B*-field homogeneity of 1%
- ➢ Clearance 540 mm
- Correctors compensating beam steering
- ➤ Insertion length 2.5 m incl. correctors


Status:

- Magnets delivered, power suppliers in production
- Problems during production, required revision
- ▶ Field mapping planned for \approx May 2019
- Vacuum chamber delivery in April 2019
- Installation planned for begin 2020

IPM Magnet Design: Bump Compensation

Magnetic field for electron guidance B = 80 mT:

Peter Forck, GSI, Nov. 22nd, 2018

IPM Magnet Design: 'Cross Talk' by neighboring Magnetization

Surface contours: BMOD 2.000515E+000

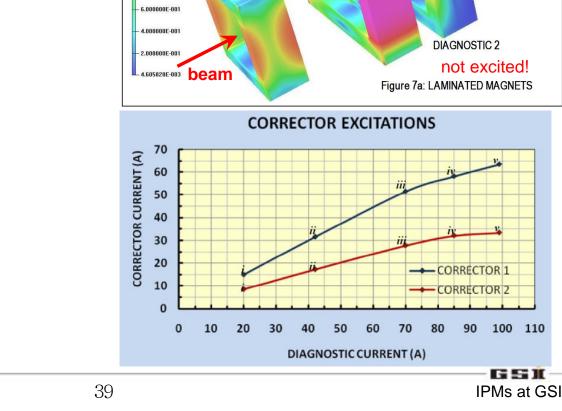
1.800000E+000

1.600000E+000

1.40000F+000

1.200000E+000

1.000000E+000


8.000000F-00

Magnetic field for electron guidance B = 80 mT:

- Larger aperture (570 mm) than length (300 mm)
- Large stray field
- \Rightarrow Magnetization of neighboring yoke \Leftrightarrow 'cross talk' of magnets
- \Rightarrow Field mapping requires entire magnet string

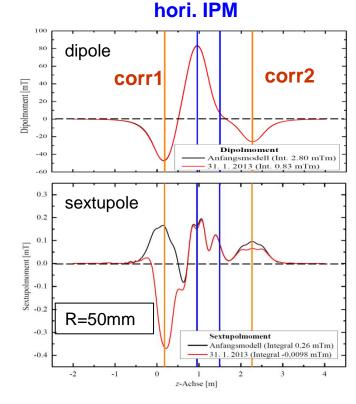
CORRECTOR 1

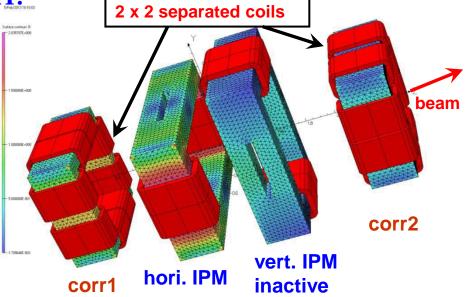
Surface magnetic field

DIAGNOSTIC 1

CORRECTOR 2

100


GSI


110

IPM Magnet Design: Sextuple Compensation

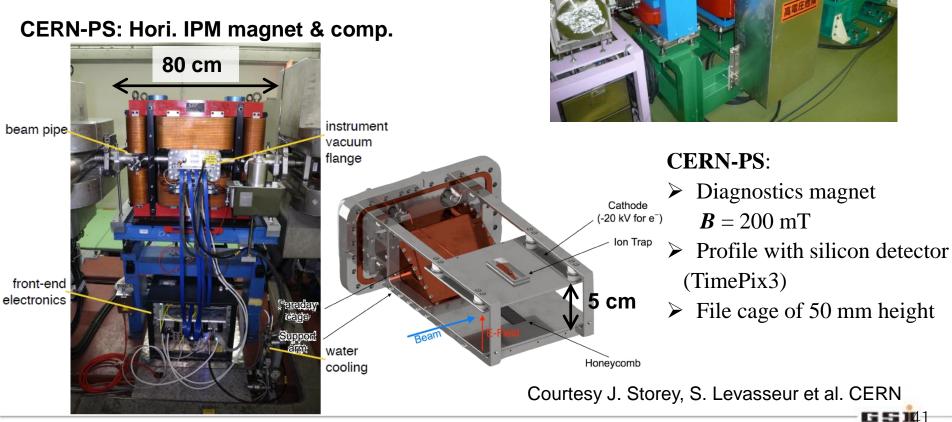
Magnetic field for electron guidance B = 80 mT:

- Larger aperture (570 mm) than length (300 mm)
- \Rightarrow Large sextupole components
- Idea: 2x2 separated coils of corr.-magnets create 'bad' dipole field
- \Rightarrow comp. sextupole effect

Normalized sextupole strength for 11 MeV/u & m/q = 2:

- ► $k_2 \cdot L \approx 0.3 \text{ m}^{-2}$ before optimization

P. Rottländer (GSI) et al., internal report


651

Magnet Design at CERN-PS & J-PARC

J-PARC Main Ring:

- diagnostics magnet gap 220 mm
- > Diagnostics field B = 250 mT, corrector B = 130 mT
- Profile with 32 strips of 2.5 mm width

Courtesy K. Satou et al. J-PARC

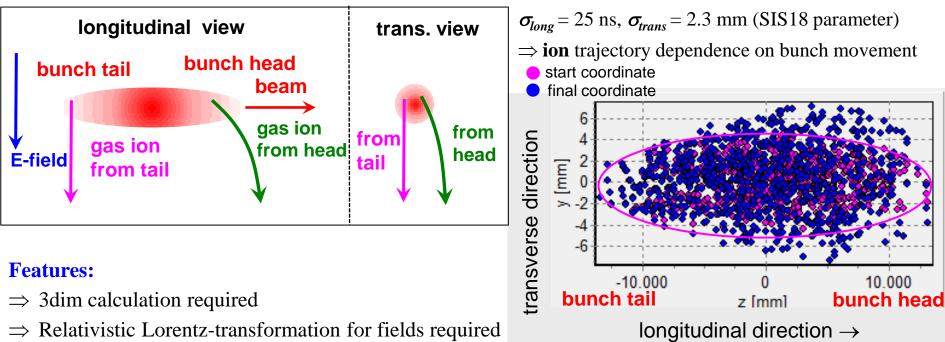
Horizo

comp

Outline of the Talk

Outline of the talk:

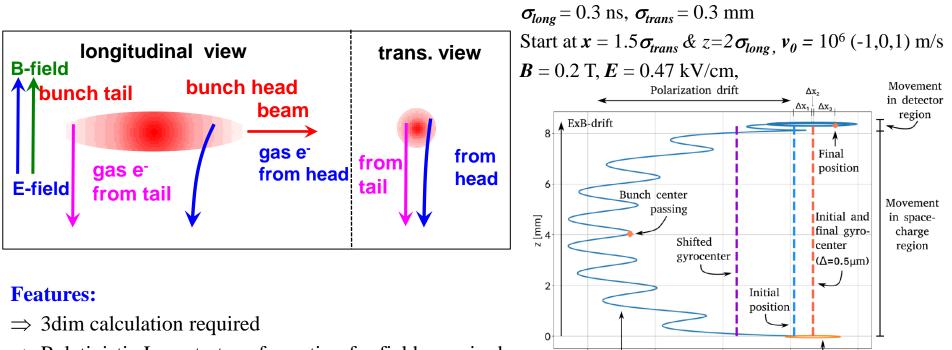
- Principle of Ionization Profile Monitors
- > Technical realization at ESR, SIS18 and for FAIR
- Some basic & advanced measurements
- Requirements for magnetic field, realization at SIS18
- Simulations for disturbing effects
- ➢ IPM at CRYRING and BIF at UNILAC
- Conclusion


FE 55 11

Simulation of Space Charge Effects: General Behavior for Ions

Space-charge effects: Beam's space charge can be comparable to external homogeneous E- field **Numerical calculation:** > Ion or e⁻ created with realistic velocity distribution

- Trajectory in field of moving bunches
- Distribution at barrier of MCP


Example: $10^{10} \operatorname{Ar}^{18+} @ 500 \operatorname{MeV/u} (\beta = 75 \%)$

Simulation of Space Charge Effects: General Behavior for <u>Electrons</u>

Space-charge effects: Beam's space charge can be comparable to external homogeneous E- field **Numerical calculation:** ≻ Ion or e⁻ created with realistic velocity distribution

- Trajectory in field of moving bunches
- > Distribution at barrier of MCP Example: LHC parameter, $2x10^{11}$ /bunch

- \Rightarrow Relativistic Lorentz-transformation for fields required
- \Rightarrow For electron detection and intense beams:
- complex trajectory due to gyration on external B-field

D. Vilsmeier et al., in preparation for PRAB

0.3

x [mm]

0.4

0.5

GSI

IPMs at GSI

Undisturbed

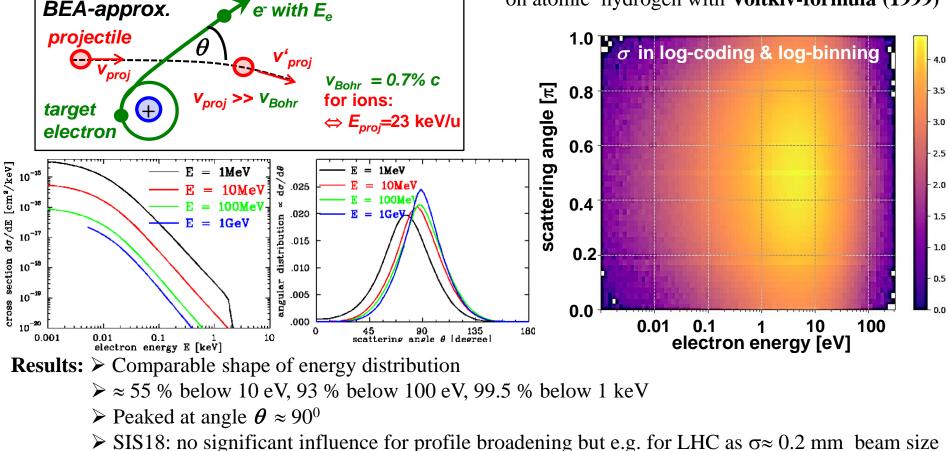
trajectory

Courtesy D. Vilsmeier (GSI)

Real

trajectory

0.1


0.2

Electron Energy & Angular Distribution

Collision of the fast projectile with target electrons leads to 'initial' cyclotron radius:

Single differential cross section for p on H_2 gas with 'Binary Encounter Approximation':

Analytical quantum mechanical approach: Double diff. cross section for 500 MeV/u Ar¹⁸⁺ on atomic hydrogen with Voitkiv-formula (1999)

Peter Forck, GSI, Nov. 22nd, 2018 Courtesy M. Krämer (GSI) 45

GSI

Code 'Virtual-IPM' by D. Vilsmeier and M. Sapinsky

Virtual-IPM: Code for **all** beam parameters with advanced Python programming:

Situation: Each laboratory has its own code with special application & restriction

 \Rightarrow 'All-in-one' code developed and published on <u>https://gitlab.com/IPMsim/Virtual-IPM</u>

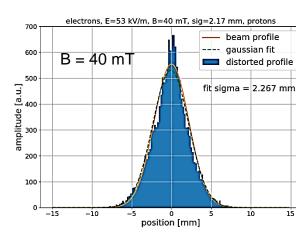
Code includes:

> Application for **LINACs**

e.g. short bunches, non-relativistic

- Application for synchrotrons e.g. long bunches, relativistic
- Homogeneous $\vec{E} \& \vec{B}$ fields *or* input CST maps
- Realistic e⁻ generation $\frac{d^2\sigma}{dF \cdot d\theta}$ \succ
- Accurate numeric for particle tracking \geq
- Meaningful GUI
- Usable for IPM, BIF, gas jets, multiple beams.... \geq

♦ ⊕ ☺ [IPMSim] Virtual-IPM	
2 🕒 😳 🕲	
Beams Device ParticleGeneration ParticleTracking ElectricGuidingField MagneticGuidingField Simulation Out	tput
Beams Configure beams:	
New Beam	
Beam BUnch Bunch Train	
Select the BunchShape: Gaussian *	
Gaussian	
This component represents a bunch that is Gaussian in all dimensions.	
Parameters:	
LongitudinalSigmaLabFrame * 1.2	
🕑 TransverseSigma 230, 250 um 👻	
Single and double	
Initial ionization cross sections Guiding	
velocities Gas jet velocity fields	
Varying in computational Uniform fields	
complexity as well as $({ m Simulation})$ Two and three dim.	
numerical accuracy	
Analytic formulations	
Particle Beam	
tracking Numerical solvers fields	
Both two and three dim.	
GSÍ	-
urtesy M. Sapinski D. Vilsmeier (GSI) IPMs at G	SI


See M. Sapinski et al., IBIC 2016

D. Vilsmeier et al., IBIC 2017 and reference therein

46 Courtesy M. Sapinski D. Vilsmeier (GSI)

initial 1200 H_+ Detection final Some Results using Virtual-IPM 10¹⁰ Ar¹⁸⁺ 500MeV/ 1000 P(x) 2.3mm *N*=10¹⁰ 800 distribution Ar¹⁸⁺ = 85mm E = 70V/mm 600 Estimation of profile deformation of ion detection of intense beams: \geq 400 σ_{final} \rightarrow example shown for 10¹⁰Ar@500 MeV/u =4.0mm 200 Estimation of required magnetic field strength for e⁻ detection: -10 0 10 beam size x [mm] -30-20 20 30 For intense beams the electron's trajectory is significantly deformed by bunch field, e.g at LHC \rightarrow Which B-field is required ? THC hadrons 6.5 TeV LHC parameter: leptons [a.u.] Max. electric field [kV m⁻¹] original profile B = 0.2 Tfinal SPS 10³ ALBA simulated, B = 0.2 T original SIS-100 $E_{kin} = 6.5 \text{ TeV}$ simulated, B = 1.0 T σ = 0.228 mm 1.3 x 10¹¹/bunch 0.5 0.5 10² σ_{long} =0.6 ns ١GS $\sigma_{trans} = 0.29 \text{ mm}$ -0.5 0.5 x [mm] x (mm) 10¹ 10⁻²

Required B-field for SIS100? \geq $E_{kin} = 30 \text{ GeV}$ 2×10^{13} /bunch $\sigma_{long} = 15 \text{ ns}$ $\sigma_x = 2.17 \text{ mm}, \sigma_y = 4.4 \text{ mm}$ \Rightarrow SIS100 magnet design is OK!

M. Sapinski et al., HB 2018

> Multiple beams: LHC electron lens project (hollow e⁻-beam as collimator)

 10^{0}

Beam size o [mm]

10¹

10²

controlled by

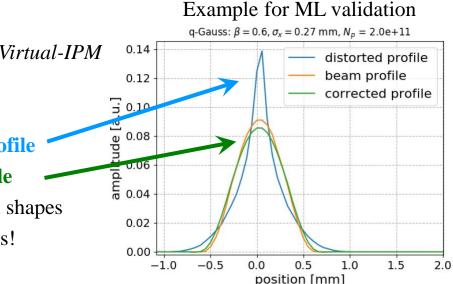
 10^{-1}

1400

Beam Induced Fluorescence Monitor

D. Vilsmeier et al., in preparation for PRAB GSI

D. Vilsmeier et al., HB 2014


Machine Learning for Image Reconstruction

Machine Learning:

'A numerical algorithm that improves its performance at a given talk based on experiences'

Idea:

- Distorted profiles calculated by *Virtual-IPM* for various input parameters
- Training of neural network
- Reconstruction of measured profile
 to approximate real beam profile
 One results: Training with Gaussian shapes
 can reconstruct non-Gaussian shapes!

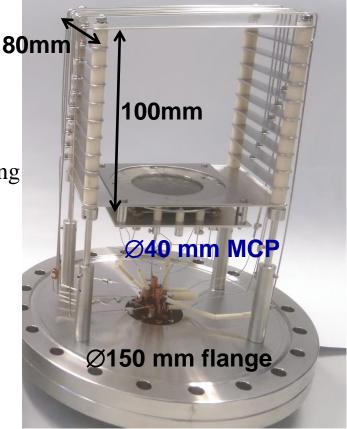
Actual subject within accelerator science, novel method for IPMs Discussed by M. Sapinski at GSI Acc. Seminar 16th Aug. 2018 & publications

M. Sapinski et al., HB 2018 & IPAC 2018, R Singh et al., IBIC 2017

FE 55 11

Outline of the Talk

Outline of the talk:

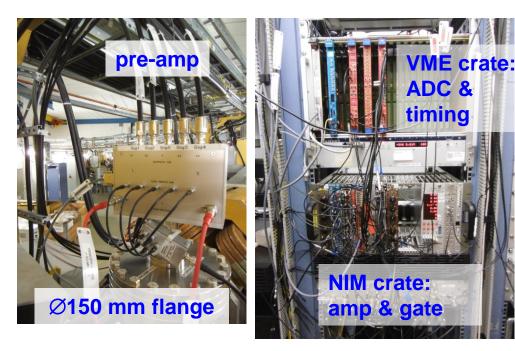

- Principle of Ionization Profile Monitors
- > Technical realization at ESR, SIS18 and for FAIR
- Some basic & advanced measurements
- Requirements for magnetic field, realization at SIS18
- Simulations for disturbing effects
- > IPM at CRYRING and BIF at UNILAC
- Conclusion

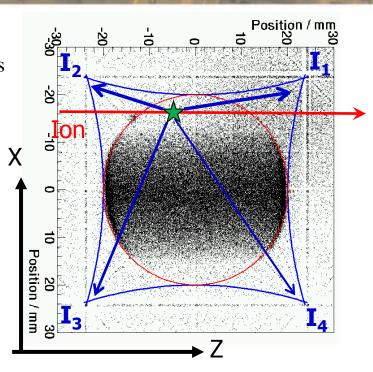
FE 55 11

IPM at CRYRING: Hardware of Field-Box

IPM design by MSL-team in 1990th:

- ➢ Field cage: 100 mm , 80 mm depth
- Chevron type (stack of 2 MCPs, 40 mm diam.)
- Resistive anode
- Charge-sensitive pre-amplifiers
- ► Resolution: $\sigma \approx 130 \, \mu m$ due to single event counting
- > Maximum MCP digitalization rates $\sim 5 \times 10^4$ Hz
- ➢ For 300 keV/u injection correction required
- ➢ At GSI: Operation without corrector




IPM at CRYRING: Electronics

Signal processing and DAQ:

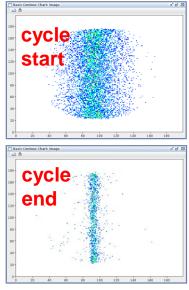
- Charge-sensitive pre-amplifiers & spectroscopy amplifiers
- ➢ DAQ: VME peak-sensing ADC, 20 kHz readout
- > Position (x, y) of each event via charge division

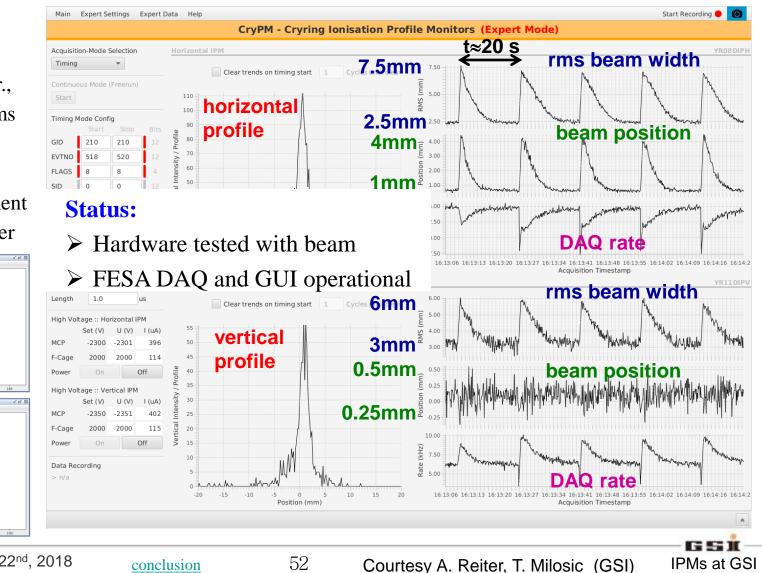
Charge readout at corners \succ

Detection of peak values \geq

Position calculation based on asymmetry

$$x/r = \frac{(I_1 + I_2) - (I_3 + I_4)}{\sum I_i} \qquad z/r = \frac{(I_1 + I_4) - (I_2 + I_3)}{\sum I_i}$$
51 Courtesy A. Reiter (GSI) IPMs at GSI


IPM at CRYRING: Results



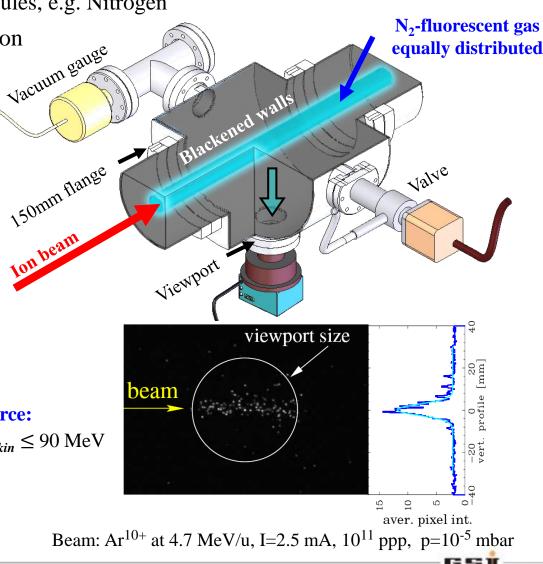
FESA DAQ and GUI used at November 2018 beam time during electron cooling

Features:

- Permanent oper., here $t_{aver} = 125 \text{ ms}$
- Good \geq signal-to-noise
- used for alignment \geq of electron cooler

Peter Forck, GSI, Nov. 22nd, 2018

Beam Induced Fluorescence (BIF) Monitor: Principle


Detecting *photons* from residual gas molecules, e.g. Nitrogen $N_2 + Ion \rightarrow (N_2^+)^* + Ion \rightarrow N_2^+ + \gamma + Ion$ 390 nm< λ < 470 nm emitted into solid angle Ω to camera single photon detection scheme

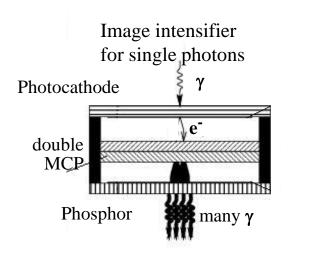
Features for UNILAC:

- Single pulse observation possible down to ≈10 µs time resolution
- High resolution (here 0.2 mm/pixel) can be matched to application by optics
- Commercial Image Intensifier
- \blacktriangleright Pressure pump up to 10⁻⁶ mbar possible

Remark concerning European Spallation Source:

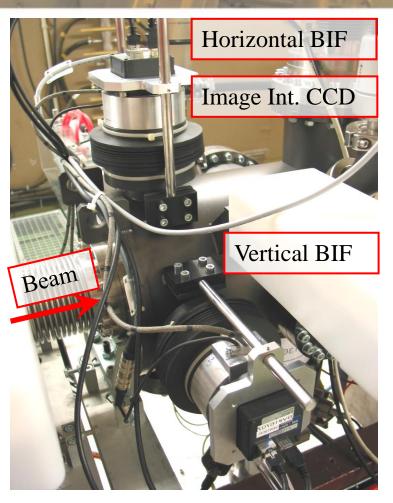
- > BIF foreseen at normal-conducting LINAC $E_{kin} \leq 90$ MeV
- IPM foreseen at super-conducting LINAC
- Space charge broadening investigated
- F. Becker et al., DIPAC'11

IPMs at GSI


Peter Forck, GSI, Nov. 22nd, 2018

BIF-Monitor: Technical Realization at UNILAC

Example: BIF station at UNILAC:


- ➢ Insertion length 25 cm
- > 2 x image intensified CCD cameras
- ➢ Optics with reproduction scale 0.2 mm/pixel
- ➤ Gas inlet + gauge, pneumatic actuator for calibration
- \succ presently installed at 7 locations
- Advantage: compact insertion, resolution adaptable of-the-shelf components

≻Disadvantage: less signal $\approx 10^{-5}...10^{-4}$ of IPM

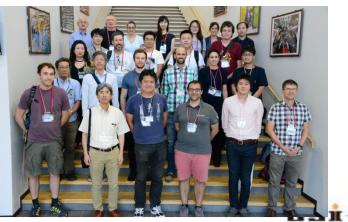
C. Andre (GSI) et al., Proc. IBIC 2014

Courtesy Ch. Andre (GSI)

Peter Forck, GSI, Nov. 22nd, 2018

Dedicated Workshops on IPM Developments

1st IPM workshop 3rd - 4th of February 2016 at CERN:
'Ionization Profile Monitor Simulation kick-off Workshop'
17 participants


2nd IPM workshop 22nd - 24th of May 2017 at GSI: *'Simulation, Design & Operation of Ionization Profile Monitors'*(Within the frame of European ARIES-ADA)
33 participants

3rd IPM workshop 18th - 20th September 2018 at J-PARC:
'International workshop on non-invasive Beam Profile
Monitors for Hadron Machines and its related Techniques'
27 participants

\Rightarrow active community to realize complex beam instrument

Summary and Outlook

Ionization profile monitors well suited for GSI rings:

- Direct measurement of profile during entire cycle
- Sufficient signal for time resolution $\approx 3...100$ ms in dependence on beam current and vacuum pressure
- > Spatial resolution of 2 mm for 'old IPM' SIS18 and ≈ 0.2 mm for other IPMs \rightarrow mostly sufficient
- > Operational monitors with complex technical realization (as common to IPMs at other institutes)
- Concept for profile distortions established by advanced simulation code, used for further applications IPM at CRYRING:
- ➢ Used during beam time, design by MSL, GSI FESA-DAQ & GUI operational, good spatial resolution IPM at ESR:
- ➢ Hardware well functional, 1st version of FESA DAQ, but GUI pending

'Old IPM' at SIS18:

- > Used frequently during machine experiments, usage during operation could be more intense
- > Appropriate GUI, presently some network problems

'New IPM' at SIS18 (serves as prototype for SIS100):

> Vacuum hardware must be improved (some reflection), 1st version FESA DAQ, but GUI pending

Modifications were required for magnets, final field mapping in Q2/19, installation begin of 2020.
IPM at FAIR-HEBT:

Simplified IPM for max. 15 location for long-term profile observation considered

Thank you for your attention!