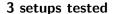
Pattern Recognition and Detector Signatures of Hyperons - Tracking Activities in Uppsala

Jenny Regina

Uppsala University

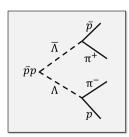
Department of Physics and Astronomy

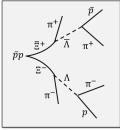
PANDA Collaboration Meeting 06/03-2018 GSI



Outline

- DayOne 2017 simulations
 - Λ̄Λ
 - _ =+=-
- $\Xi^+\Xi^-$, decay vertex, momentum
- Test of SttCellTrackFinder




Day1 2017 PANDA Setups

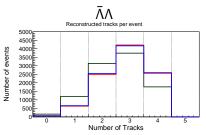
- Full Setup
- Day1 + only MVD strips + only two outermost GEM planes + only FTS1234
- Day1 + only MVD strips + only two outermost GEM planes + only FTS1256

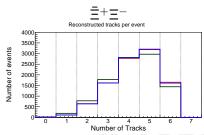
DayOne 2017

$$\bar{p}p
ightarrow \bar{\Lambda}\Lambda
ightarrow \bar{p}\pi^+p\pi^-$$

- 10,000 events
- 1.642 GeV
- Forward peaking distribution

$$\bar{p}p \rightarrow \bar{\Xi}^{+}\Xi^{-} \rightarrow \bar{\Lambda}\pi^{+}\Lambda\pi^{-} \rightarrow \bar{p}\pi^{+}\pi^{+}p\pi^{-}\pi^{-}$$

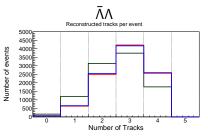

- 10,000 events
- 4.6 GeV
- Isotropic distribution

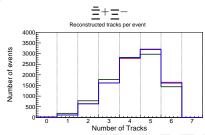

Software:

- FairSoft mar17, FairRoot 17.03, PandaRoot trunk revision 30194
- IdealTrackFinder and StandardTrackFunctor (\geq 4 MVD or \geq 6 MVD+STT+GEM hits) and OnlyFtsFunctor (\geq 6 FTS hits)
- Geant3

DayOne 2017, Reconstructed final state tracks

Target spectrometer, ≥ 4 STT hits

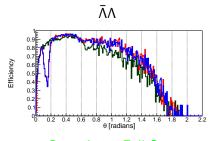


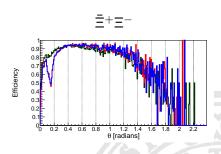


- Green Line: Full Setup
- Red Line: Reduced setup with FTS1234
- Blue Line: Reduced setup with FTS1256
- ⇒ More tracks reconstructed for reduced setup
 - Less material between STT and IP for reduced setup
 - Bad quality tracks can have been reconstructed for reduced setup

DayOne 2017, Reconstructed final state tracks

Target spectrometer, \geq 4 STT hits

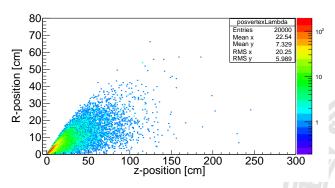




- Green Line: Full Setup
- Red Line: Reduced setup with FTS1234
- Blue Line: Reduced setup with FTS1256
- \Rightarrow Difference larger for $\bar{\Lambda}\Lambda$ case than $\bar{\Xi}^+\bar{\Xi}^-$ case
 - Could be effect of decay topology
- ⇒ No significant difference between the two reduced setups

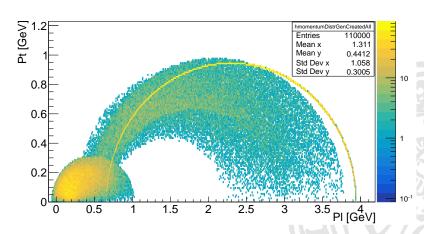
DayOne 2017, Efficiency

Target and forward spectrometer

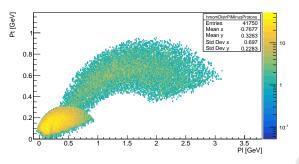


- Green Line: Full Setup
- Red Line: Reduced setup with FTS1234
- Blue Line: Reduced setup with FTS1256
- \Rightarrow Significant drop in efficiency at $\sim 10^{\circ}$ for reduced setups
 - Transition region between target spectrometer and forward spectrometer
- \Rightarrow Drop larger for $\bar{\Lambda}\Lambda$ case than $\bar{\Xi}^+\bar{\Xi}^-$ case
 - Could be effect of decay topology

Decay Vertex

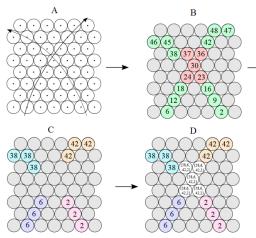

MC decay vertex of Λ and $\bar{\Lambda}$ in Ξ^- and $\bar{\Xi}^+$ decay chain

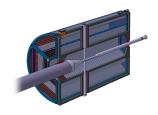
- \bullet First FT station 295.4 cm < z < 310.4 cm
- All final state particles are created before first FT station


Momentum distribution

MC Momentum distribution of all particles in decay chain

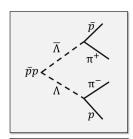
Momentum distribution

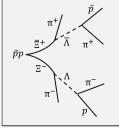

Momentum distribution, Ideal track finder, standard track functor



- Clearly separated regions of π^-/π^+ and p/\bar{p}
- Regions blend together
- Particles not going so much in forward direction reconstructed in target spectrometer
- Many forward going particles reconstructed in forward spectrometer

SttCellTrackFinder


- J. Schumann
- Cellular Automaton
- Riemann Fit



SttCellTrackFinder

$$\bar{p}p
ightarrow \bar{\Lambda}\Lambda
ightarrow \bar{p}\pi^+p\pi^-$$

- 10,000 events
- 1.642 GeV
- Forward peaking distribution

$$\bar{p}p \rightarrow \bar{\Xi}^+ \bar{\Xi}^- \rightarrow \bar{\Lambda}\pi^+ \Lambda \pi^- \rightarrow \bar{p}\pi^+ \pi^+ p \pi^- \pi^-$$

- 10,000 events
- 4.6 GeV
- Isotropic distribution

Software:

- FairSoft mar17, FairRoot 17.03, PandaRoot trunk revision 30194
- IdealTrackFinder and OnlySttFunctor (\geq 6 STT hits)
- Geant4

TrackingQA

Evaluate performance of track finder

- Fully found: track is reconstructed using all hits belonging to the MC track
- Partly found: track is reconstructed using some (but not all) hits belonging to MC track but all hits are from one MC track
- **Spurious:** 70% of all true hits are used for reconstruction
- (Clones: more than one track reconstructed from one MC track)
- Ghosts: reconstructed track not matching a MC track

Taking into account only STT hits

- All possible tracks with hits: 31,606
- Primary tracks possible: 24,781
 - Not Found: 684
- Secondary tracks possible: 6,825
 - Not Found: 1,205
- Fully found: 8,741 (27.7%)
- Partly found: 21,332 (67.5%)
- Spurious: 1,058 (3.3%)
- Ghosts: 2,480 (7.8%)

Taking into account only STT hits

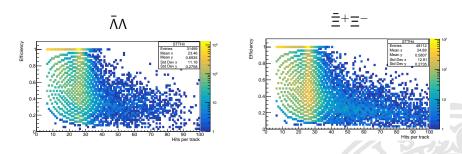
• All possible tracks with hits: 50,708

Primary tracks possible: 42,742

Not Found: 3,104

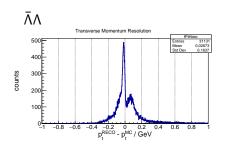
Secondary tracks possible: 7,966

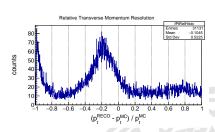
• Not Found: 2,196


• Fully found: 7,095 (14.0%)

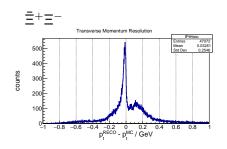
• Partly found: 36,194 (71.4%)

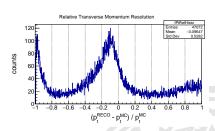
• Spurious: 3,783 (7.5%)


• Ghosts: 11,970 (23.6%)

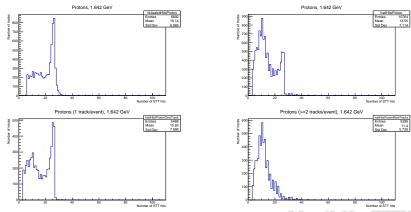

Efficiency

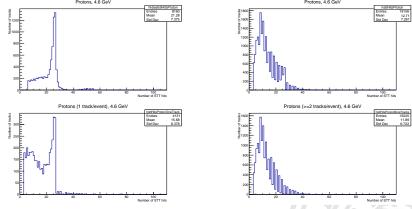
- Better efficiency for smaller number of hits per track
- Best efficiency around 27 hits per track
- No bigg difference in efficiency for the different decay chains


Transverse momentum resolution



- Not symmetric around 0
- Slightly higher momentum for reconstructed tracks


Transverse momentum resolution


- Not symmetric around 0
- Slightly higher momentum for reconstructed tracks

CellTrackFinder, $\bar{\Lambda}\Lambda$, final state protons

- Sharp cutoff after 27 hits for SttCellTrackFinder
- Pattern dominated by tracks from events with one reconstructed final state proton track per event

CellTrackFinder, $\bar{\Xi}^+\Xi^-$, final state protons

- Sharp cutoff after 27 hits for SttCellTrackFinder
- Pattern dominated by tracks from events with several reconstructed final state proton tracks per event
- Tracks with even and uneven number of hits treated differently in clusterization
- Consitently more tracks with even number of hits

Outlook

- Details of Clustering in STTCellTrackFinder
- Investigate SttCellTrackFinder using box generator
- Work towards time based reconstruction with STTCellTrackFinder
 - EventBurstBuilder event mixing
 - EventGapBuilder produce gap in between events
- Test SttCellTrackFinder for Ω events

Thank You!

