Machine Learning Techniques For Particle Identification

06.March.2018 | Waleed Esmail, Tobias Stockmanns, Michael Kunkel, James Ritman

Institut für Kernphysik (IKP), Forschungszentrum Jülich

Outlines:

- ➤ Generation and Preparation.
- ➤ Decision Trees.
 - Evaluation metrics.
 - Efficiency calculations.
- ➤ Neural Networks.
 - Evaluation metrics.
- ➤ Comparison to the Classical PID Algorithms.
- >Conclusion.

Seite 2

Generation & Preparation:

Uniform Generator (Box Generator):

- momentum range: (0.2 5) GeV.
- phi range: 0 360°.
- theta range: 0 180°.
- particle species: $[e^{\mp}, \pi^{\mp}, \mu^{\mp}, k^{\mp}, p^{\mp}]$. One particle per event.
- 750k events (150k for each type).
- 750k for (particles), and 750k for (antiparticles).
- Particles are matched to their **MC truth** information.

Machine Learning:

- Machine learning is about modeling your data.
- Ask the correct questions.
- ML algorithms fall into three broad categories:
 - 1. Supervised learning.
 - 2. Unsupervised learning.
 - 3. Reinforcement learning.

Focus: supervised learning (multi-class classification).

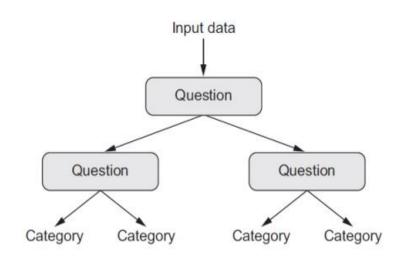
- Inputs for the algorithm: (Ax = b)
 - 1. Feature matrix (DataFrame).
 - 2. Target column vector.

energy	momentum	charge	position	MvdHits	GemHits	SttHits	TofStopTime	TofTrackLength	EmcCalEnergy
1.45992	2.1119	-1	1.53556E-4	3	0	26	0.0	0.0	0.250083
4.14557	17.1663	-1	6.65813E-6	5	Θ	17	3.95565	117.048	0.991413
3.51102	12.3078	-1	0.00648225	1	Θ	24	0.0	0.0	2.21215
3.45948	11.9486	-1	5.4671E-6	4	Θ	22	2.89786	86.4262	0.29421
4.78585	22.8849	-1	6.36045E-5	3	Θ	26	0.0	0.0	2.62603
-									
only showing top 5 rows									

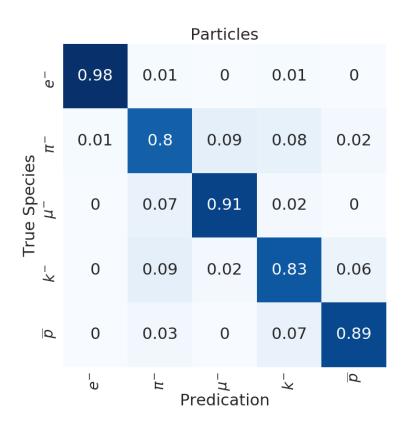
Decision Trees:

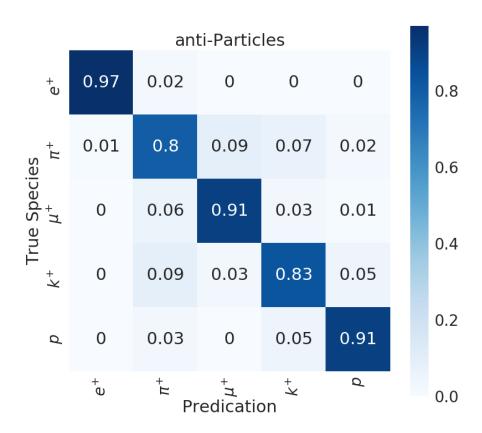
1) Follow the recipe, **choose the model (algorithm)**, fix the **hyper-parameters**, **apply** (fit) the model, and *predict*.

- 1) Validate the model:
 - Tune the hyper-parameters, pickup more/less complicated model, etc...
- Random Forests (RF) is used for the modeling.
- **RF** is an ensemble of decision trees.
 - The algorithm makes a prediction for every tree in the forest.
 - ➤ Aggregate the predictions via hard voting.
- SciKit-Learn Python Package was used.
- Data was split (70% training).

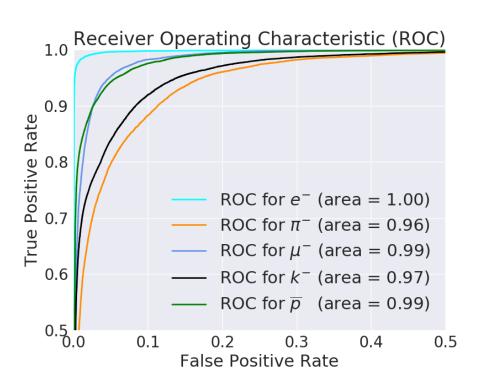


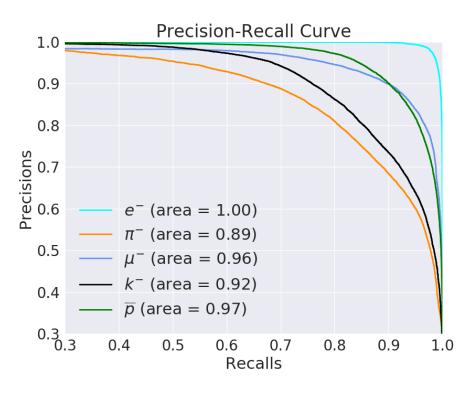
1. Confusion Matrices





2. Receiver Operating Characteristic (ROC), Precision, and Recall.





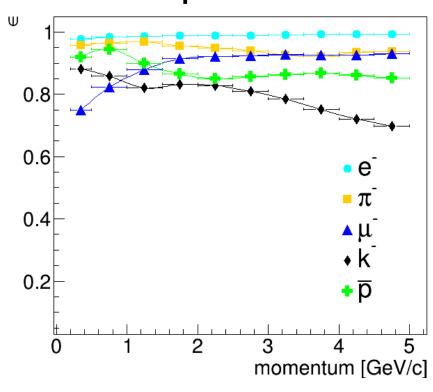
True Positives (TP) & True Negatives (TN). False Positives (FP) & False Negatives (FN).

recall =
$$\frac{TP}{TP + FN}$$
 precision = $\frac{TP}{TP + FP}$

Probabilities & Efficiencies:

Probability distributions

PID efficiency p > 0.5

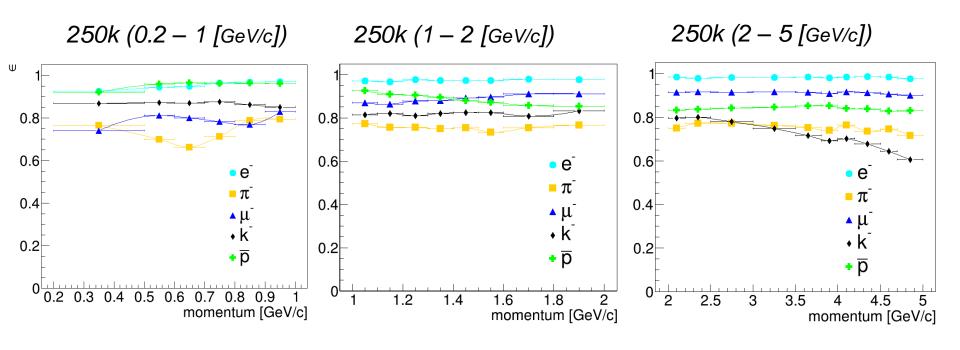


$$\in = \frac{yield \& p > 0.5}{yield}$$

Page 8

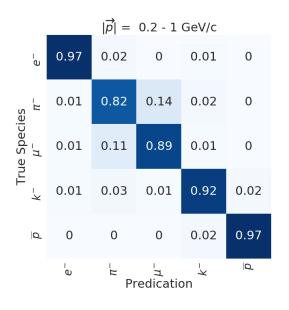
Efficiency for different momentums:

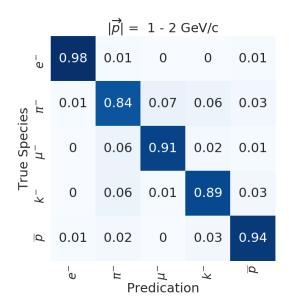
For each momentum range 250K events generated (50k per particle type).

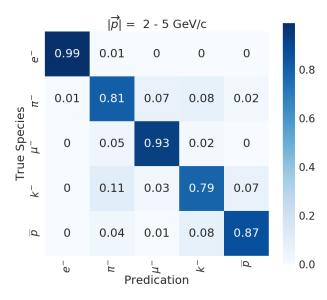


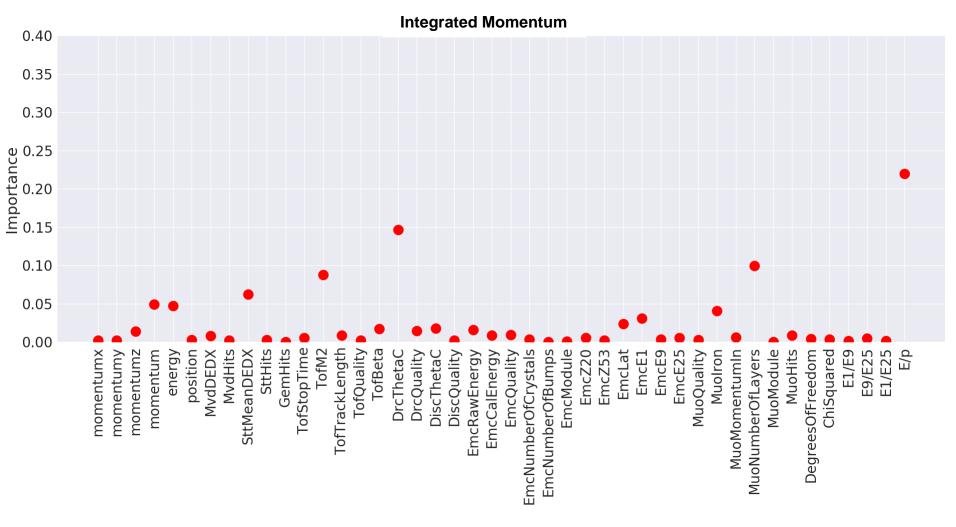
Confusion Matrices as function of momentum

For each momentum range 250K events generated (50k per particle type).



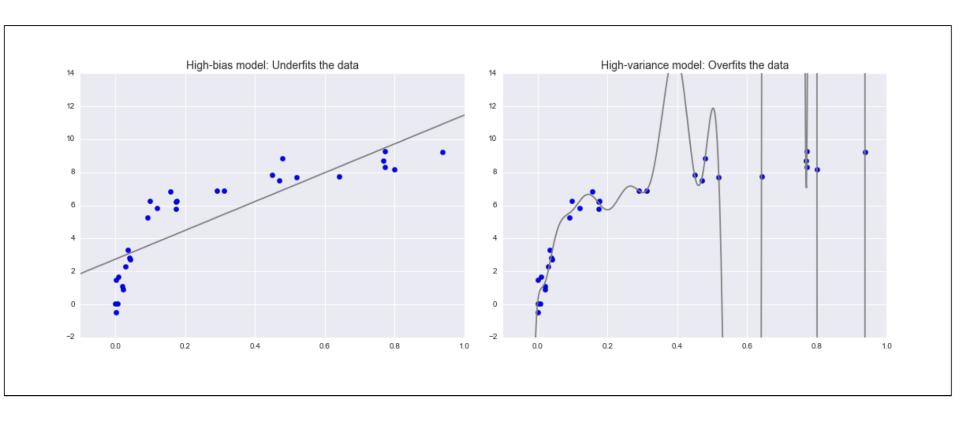






Over-fitting check:

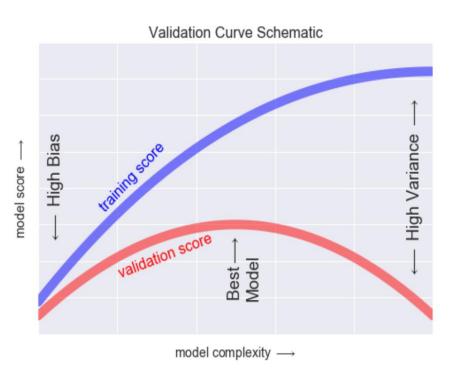
Consider these example regression fits to the same dataset

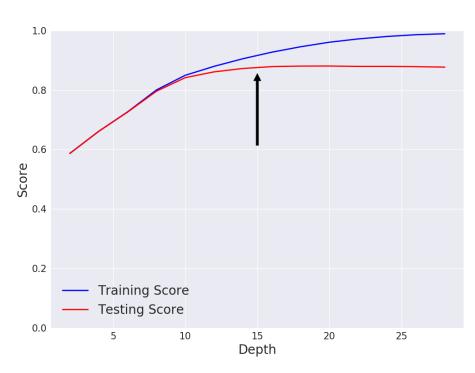


Page 12

Over-fitting check:

Validation Curve:



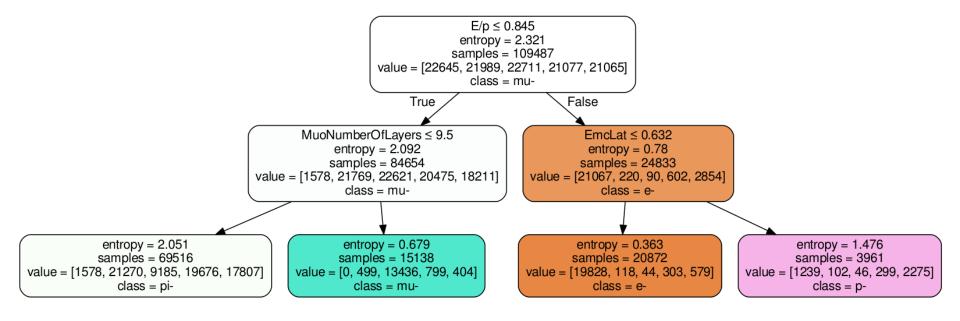


Grid search was used to tune the hyper-parameters of the algorithm.

max_features	max_depth	n_estimators
35	15	100

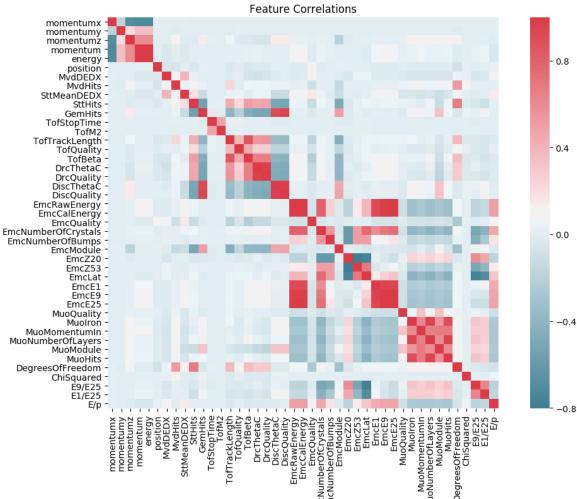
Tree visualization:

Information Gain:
$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$



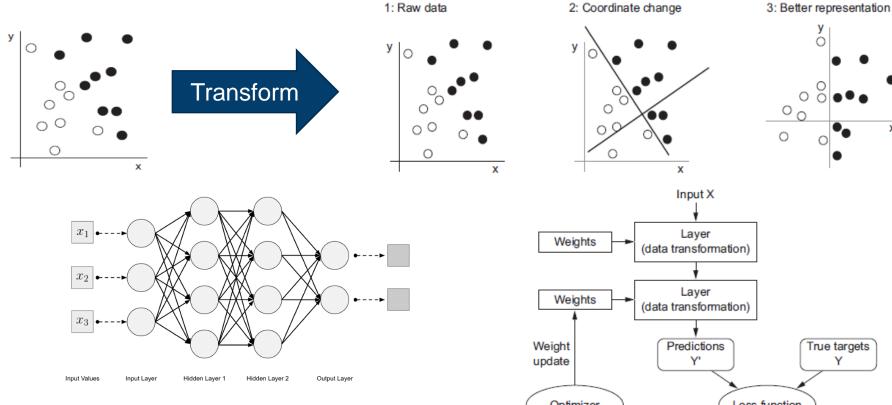
Correlation Matrix:

Input features :

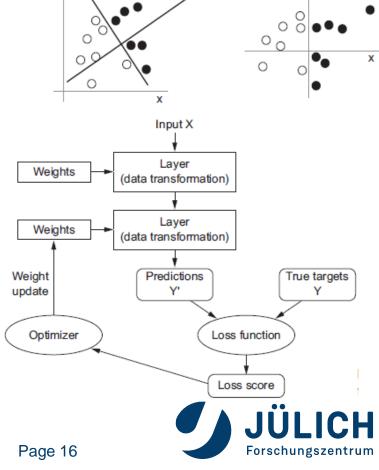


Neural Networks:

Neural Networks is about meaningfully transform the data

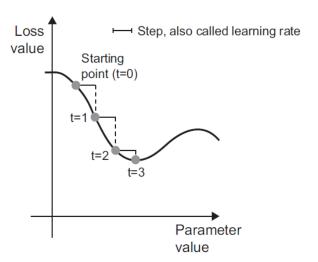


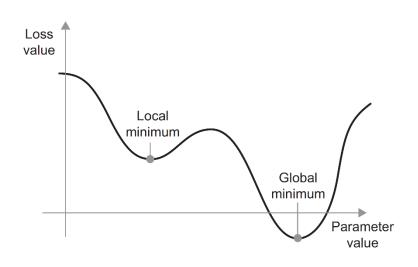
- Training loop of DNN:
 - *Input data*, parameterize by *weights* (transform the data), predict and compute the loss score, and update (epochs).



Deep Learning:

Artificial Neural Networks

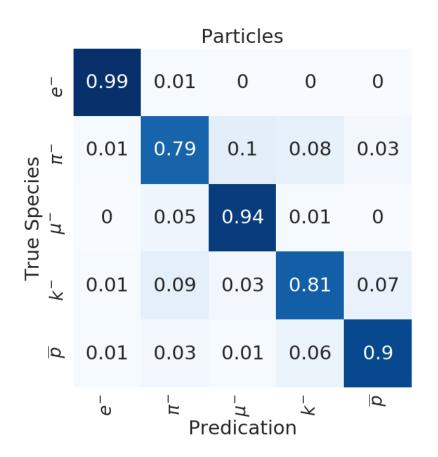


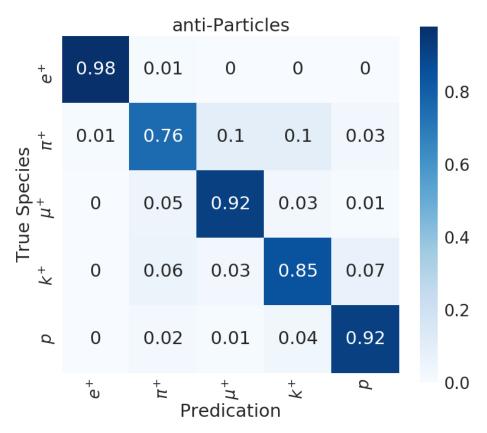


- The update step is guided by *minimizing the loss function* by calculating its *gradient*.
- *Keras* Python Package was used.

Hidden	Activation function	Output	Learning
layers		layer	rate
3	relu	softmax	0.001

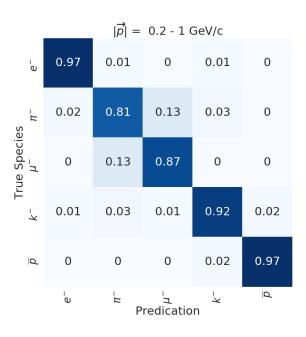
Confusion Matrices

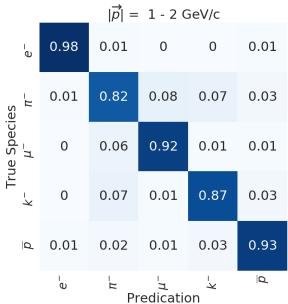


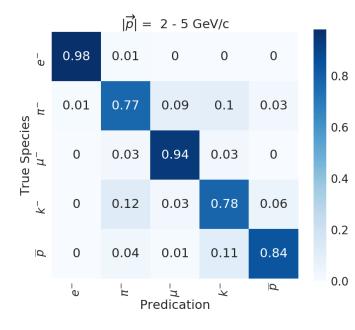


Confusion Matrices as function of momentum

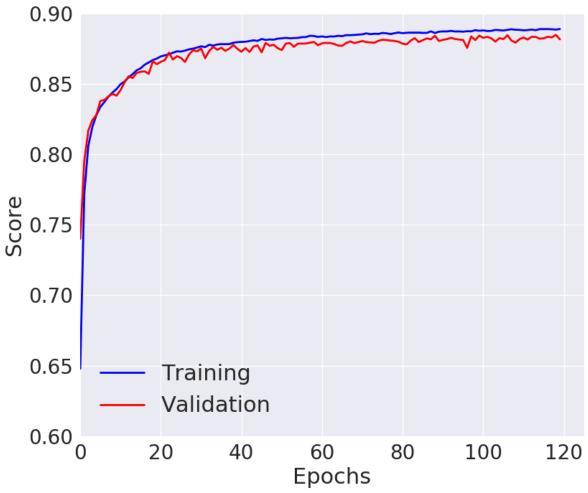
For each momentum range 250K events generated (50k per particle type).



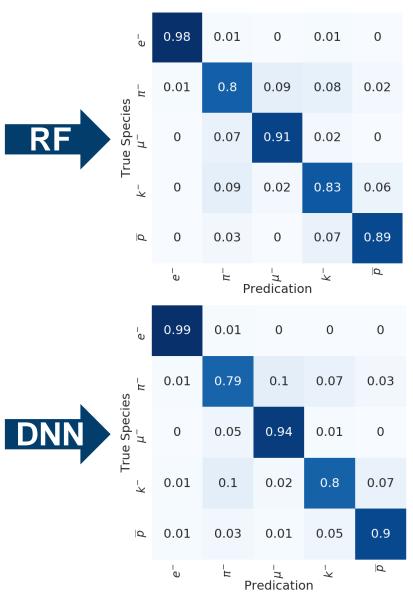


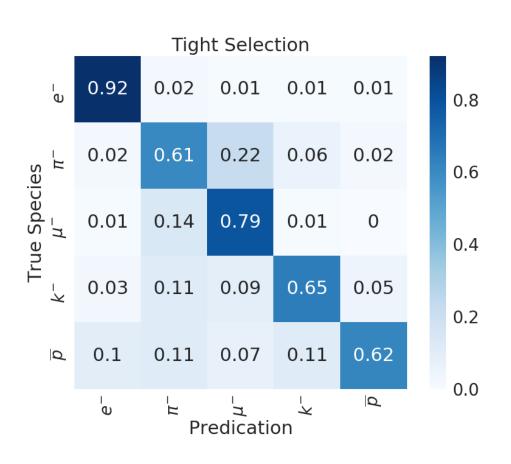


Validation Curve:



Comparison to Classical Algorithms:





Conclusion

• Decision trees showed good performance in classifying charged particles over the specified momentum range.

• Neural Networks also showed good performance in the classifying task, but more training data can help to improve its accuracy.

Page 22

THANK YOU

BACK UP

