Radioactive lon projects at CERN and FAIR based on Cryogenics

TECHNISCHE UNIVERSITÄT DARMSTADT

Alexandre Obertelli TU Darmstadt

May 3rd, 2018

Neutron-rich nuclei

Outline

New group at TU Darmstadt, with projects related to FAIR and cryogenics

- Shell evolution A cryogenic H₂ target and vertex tracker for AGATA - HISPEC
- Hypernuclei Cryogenic H₂ target and charged particle tracker inside GLAD at R3B

Halo nuclei

A transportable *cryogenic trap* at CERN for antiprotons. A step towards *FLAIR*

RIB facilities worldwide

Hydrogen targets for nuclear studies

- > Higher luminosity (150 mm $H_2 = 1 \text{ g.cm}^{-2} = 4.10^{23} \text{ cm}^{-2}$)
- Hydrogen: "structureless" target
- Quasifree (p,2p) or (p,pn): "clean" probe
- > Minimized **background** (pure H_2 target, less bremsstrahlung/neutrons)
- Improved energy resolution : cancelation of the target contribution

Past and present times, many uses at GSI/FAIR :

- quasifree scattering
- spallation
- proton-induced fission
- interaction cross section measurements
- high-momentum nucleon transfer
- pionic atoms

... with the (manageable) difficulty of cryogenic infrastructure and safety.

Brief history of LH2 target developments

Historical engineering expertise at CEA Saclay

1990 to 1997: Several LH₂ targets for the Saturne National Laboratory

1995 to 1997 : POLDER project at J.LAB. LH₂ target Ø 150 mm L = 150 mm

1996 to 2000: FRS1 project at GSI. LH₂ target Ø 20 mm L = 10 mm

1999 to 2004: *FRS2 project at GSI*. LH₂ target Ø 20 mm L = 60 mm and Ø 60 mm L = 200 mm

2006 to 2007: Spaladin project at GSI. Two simultaneous LH₂ targets Ø 25 mm, L1 = 1 mm and L2 = 4 mm

2010 to 2011: *Prespec project at GSI*. LH₂ target Ø 75 mm L = 70 mm

2011: Sofia project at GSI. Upgrade of Spaladin with a Ø 25 mm L = 10 mm target

Since 2011: Minos project at Riken. LH₂ targets Ø 40 mm, L1 = 50 mm, L2 = 100 mm, L3 = 150 mm

Since 2017: Cocotier project at R3B/GSI. LH₂ targets Ø 30 mm, L1 = 15 mm, L2 = 150 mm

Slide J.-M. Gheller (CEA)

Operation

Operation

Slide A. Corsi, G. Authelet (CEA)

Operation

PRESPEC hydrogen target (in-beam validation)

TECH UNIV DAR/

2012: in-beam validation at GSI with RISING gamma detectors (PRESPEC)

70-mm thick, 60-mm diameter 200 micron thick Mylar cell

Very positive results Spectra show low background

C. Louchart et al., NIM A 736, 81 (2014)

DALI2 and MINOS at the RIBF (Japan)

TECHNISCHE UNIVERSITÄT DARMSTADT

MINOS working principle

SEASTAR physics program: 2014 - 2017

SEASTAR spokespersons: P. Doornenbal (RIKEN), A. Obertelli

SEASTAR physics program: 2014 - 2017

03.05.2018 | GSI Accelerator Seminar | A. Obertelli

Future: high-resolution with AGATA

- □ High-resolution Ge tracking arrays open new opportunities
- □ Excellent energy resolution (0.2%), spatial resolution of first interaction point <5-mm
- □ Upcoming plan: build a MINOS-like device for AGATA @ FAIR
- □ Requires a compact geometry (23-cm diameter of AGATA): Silicon tracker around H₂ target

S=-2

S=-1

Strangeness

Hypernuclei

Hypernucleus consists of nucleons (n,p) + hyperon (**Y**)

Notation ${}_{Y}^{A}Z$, Y: hyperon, A=N_n + N_p + N_Y

- Λ (usd), lowest mass hyperon (1150 MeV)
- free Λ lifetime: τ =261 ps
- Hypernuclei: weak decay (mesonic / non mesonic)

ΛΛ, Ξ hypernuclei

A, Σ hypernuclei

non-strange nuclei

neutron number

Proton-rich nuclei

eutron

halo

Strangeness = a new dimension to explore

Hypernuclei @ GSI / FAIR

- GSI / FAIR a unique facility to produce hyper nuclei
- □ Heavy ion collisions at E > 2 GeV/nucleon, NN -> Λ K N (thr.: 1.6 GeV)
- □ Pioneering work by **T. Saito** (GSI) / proof of principle performed with HYPHI0, GSI

Hypernuclei @ R3B

Plan: hypernuclei studies at R3B

Y. Sun *et al.*, submitted to PRC (2017)

Production of light hypernuclei with light-ion beams and targets

Plan: hypernuclei studies at R3B

03.05.2018 | GSI Accelerator Seminar | A. Obertelli

TECHNISCHE

UNIVERSITÄT

Example: TPC inside SAMURAI (RIBF)

TECHNISCHE UNIVERSITÄT DARMSTADT

High-granularity hybrid system inside GLAD

A future cryogenic target laboratory

□ A project at TU Darmstadt

Objectives

- cryogenic hydrogen targets combined with trackers
- liquid TPCs for nuclear physics
- R&D

Possible first projects

- H2 target + Si tracker for high resolution in-beam gamma spectroscopy
- H2 target + tracker for R3B GLAD
- H2 targets for S-FRS to be considered

infrastructure

Collaboration

- Technical and physics collaborations with GSI, CEA to be discussed
- Contact person at GSI would highly beneficial

Halos and neutron skins

X. Vinas et al., Eur. Phys. J A 50, 27 (2014)

□ neutron skins and halos have been extensively studied

- □ structure phenomenon difficult to characterise and to measure accurately
- □ skins also motivated by the Nuclear Equation of State (EOS)
- □ Halos not known well (at all) beyond mass 15, while predicted

Antiproton annihilation: a probe for the nuclear density tail

Brookhaven NL: W. M. Buggs et al., Phys. Rev. Lett. 31, 475 (1973)

Antiproton-proton, pp [43]	
Pion final state	Branching ratio
$\pi^{0}\pi^{0}$	0.00028
$\pi^{0}\pi^{0}\pi^{0}$	0.0076
$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.03
$\pi^{+}\pi^{-}$	0.0032
$\pi^{+}\pi^{-}\pi^{0}$	0.069
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.093
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.233
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.028
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.069
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	0.196
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.166
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.042
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.021
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	0.019

Antiproton-neutron, pn [46]

Pion final state	Branching ratio
$\pi^{-}\pi^{0}$	0.0075
$\pi^{-}k\pi^{0} (k > 1)$	0.169
$\pi^{-}\pi^{-}\pi^{+}$	0.023
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$	0.17
$\pi^{-}\pi^{-}\pi^{+}k\pi^{0} (k > 1)$	0.397
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}$	0.042
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}\pi^{0}$	0.12
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}k\pi^{0} \ (k > 1)$	0.066
$\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}\pi^{+}k\pi^{0} \ (k \ge 0)$	0.0035

Antiproton annihilation: a probe for the nuclear density tail

03.05.2018 | GSI Accelerator Seminar | A. Obertelli

FLAIR

□ FLAIR = Facility for Low-energy Antiproton and Ion Research

- □ Proposed in 2004
- Not included in the Modularized Start Version of FAIR

Lol have been submitted:

- □ X-ray of light antiprotons atoms
- □ X-ray of heavy antiprotons atoms
- □ production of strangeness
- antiprotons and exotic nuclei proposed by Wada, Yamasaki M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B 214 (2004)
- Still possibilities at FAIR after CRYRING E. Widmann, Physics Scripta T166 (2015)

PUMA: Pbar Unstable Matter Annihilation

- □ Transport antiprotons from ELENA (CERN) to ISOLDE
- □ Device to be build (funded from 01/2018, for 5 years)
- □ First experiment at ISOLDE foreseen in 2022
- □ Pioneer experiment with antiprotons as a probe for short-lived nuclei

PUMA : schematic description

NEWS · 20 FEBRUARY 2018 · CORRECTION 20 FEBRUARY 2018

Physicists plan antimatter's first outing – in a van

Researchers intend to transport the elusive material between labs and use it to study the strange behaviour of rare radioactive nuclei.

Elizabeth Gibney

ANTIMATTER TO GO

To reveal the surface structure of atomic nuclei, physicists send ions of rare isotopes into a bottle 700 millimetres long — where they annihilate with antiprotons stored in the trap.

PUMA : schematic description

NEWS · 20 FEBRUARY 2018 · CORRECTION 20 FEBRUARY 2018

Physicists plan antimatter's first outing – in a van

Researchers intend to transport the elusive material between labs and use it to study the strange behaviour of rare radioactive nuclei.

Elizabeth Gibney

ANTIMATTER TO GO

To reveal the surface structure of atomic nuclei, physicists send ions of rare isotopes into a bottle 700 millimetres long — where they annihilate with antiprotons stored in the trap.

Design, N. Marsic, H. De Gersem, W. Müller TEMF institute, TU Darmstadt 4.00327 -4.00255 -4.00102 -4.00109 -4.00036 -3.99964 -3.99991 -3.99010 -

Challenges

□ Cryostat suited for ultra-high vacuum (<10⁻¹⁷ mbar) and insertion of low-energy ions

- sealed by thin entrance window (20 nm, proposed solution Si3N4)
- 4K
- ions & antiprotons cooling
- C. Smorra et al., Int. Jour. Mass. Spec. 189, 19 (2015)
- □ Trapping of one billion antiprotons
- □ **Transportable trap** that meets contrains from environment (GBAR / ISOLDE, costs) C.H. Tseng and G. Gabrielse, Hyperfine Interactions 76, 381 (1993)

□ **Final state** interaction correction uncertainties M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B **214** (2004)

Sealed trap for antiprotons

Lifetime of antiprotons determined by the vacuum

$$P_{H}(\textit{mbar}) = 6 \times 10^{-16} T(\textit{K}) / \tau(\textit{jours})$$

- ONE solution: cryogenic (4 K) sealed vacuum
- Done on regular basis at CERN for antiproton physics: P<10⁻¹⁷ mbar
- Ex. S. Ulmer, BASE experiment at CERN / AD Lifetime of stored antiprotons (about 15) estimated > 25 years

Thin sealing window for Radioactive lons

UNIVERSITÄT DARMSTADT

- Si₃N₄: Silicon nitrite spread in industry
- Preferred material for TFM windows
- Stands pressure difference of 1 bar
- 4 mm² for 10 nm remains a challenge

- high vacuum implies special soldering technique of the substrat to a surface
- expertise at TU Munchen: J. Wieser, A. Ulrich
- window from e gun to gas volume

Summary

□ New projects related to GSI/FAIR involving cryogenics

- □ A compact MINOS-like system for in-beam spectroscopy with AGATA
- □ H2 target / Silicon tracker inside a 23-cm diameter chamber
- Prototype in 2020
- □ Production and study of **hypernuclei at R3B**
- H2 target / TPC / low-material budget tracking system
- Prototype in 2021
- □ Excess of neutrons may develop into **thick skins** or **halos**
- □ First use of **antiprotons** as a probe for rare isotopes
- □ Transportable **cryogenic trap** for 1 billion antiprotons (PUMA)
- □ First experiments in 2022
- □ A program at CERN towards FLAIR
- □ A laboratory for cryogenics developments at TU Darmstadt is foreseen
- Collaboration with GSI/FAIR is welcome / desired

