The PROTO60

Performance of the PROTO60

Multiplicity

Position Resolution
Position Calculation
Daniel Bremer, Peter Drexler, Tobias Eißner, Werner Döring, Till Kuske, Markus Moritz, Rainer Novotny, Jürgen Schneider, Rene Schubert

II. Physikalisches Institut Gießen

9. September 2009

Outline

The PROTO60
Energy ResolutionCosmic CalibrationDifferent ArraysMultiplicity
Position Resolution
Position Calculation
Energy Dependence
Beamspot
Time ResolutionWithout Corrections
Timewalk CorrectionTime Resolution of the Central Detector
Conclusion/Outlook

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution Without Corrections Timewalk Correction Time Resolution of the Central Detector

Conclusion/Outlook

JUSTUS-LIEBIG-

 5 UNIVERSITAT
The PROTO60

- The PROTO60 is a prototype for the Barrel EMC for $\bar{P} A N D A$
- Consists of 60 crystals with Type 6 geometry
- Readout with single Large-Area-Avalanche-Photodiode (LAAPD) at temperature $T=-25^{\circ} \mathrm{C}$

Beamtime in February 2009

- The MAMI-Accelerator together with the Tagger provides tagged Photons up to Energies of 1.5 GeV
- 15 Tagger Channels over the whole energy range were chosen
- Four runs with 3 different beam positions (shown later)
- Readout adjusted to 200 MeV dynamic range
- 15db attenuator after preamp crystal 35
- 15db attenuator after preamp crystal 36 except beam in center position PROTO60

Daniel Bremer

The PROTO60
Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution

Position Calculation

 Energy Dependence BeamspotTime Resolution
Without Corrections
Timewalk Correction
Time Resolution of the Central Detector

Conclusion/Outlook

Setup

${ }^{\wedge}$ Main Beam

Performance of the PROTO60

Daniel Bremer

The PROTO60

Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution

Position Calculation

 Energy Dependence BeamspotTime Resolution
Without Corrections
Timewalk Correction
Time Resolution of the Central Detector

Conclusion/Outlook

Setup

^Main Beam

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity
Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution Without Corrections Timewalk Correction Time Resolution of the Central Detector

Cosmic Calibration

- Calibration was done with Cosmic Muons
- Average stopping power in PWO [PDG]: $10.2 \frac{\mathrm{MeV}}{\mathrm{cm}}$
- Average passlength per crystal of the PROTO60: 2.4 cm
- This gives an average energy deposition of 24.5 MeV
- Deviation of calibration due to passlength variations ≤ 0.27 \%

Daniel Bremer

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays

Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Conclusion/Outlook

Line Shape

- Above: Line shapes for different arrays at 0.158 GeV photon energy
- Below: Line shapes for different arrays at
1.441 GeV photon energy
- Energy treshold of 0.75 MeV

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity
Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution Without Corrections Timewalk Correction Time Resolution of the Central Detector

Energy Resolution for Different Arrays

	Whole PROTO60	5×5	3×3
$\frac{\sigma}{E}$	$0.626 \%+\frac{1.770 \%}{\sqrt{E / G e V}}$	$0.528 \%+\frac{1.911 \%}{\sqrt{\overline{1 / G e V}}}$	$0.307 \%+\frac{2.436 \%}{\sqrt{E / G e V}}$
at 1 GeV	2.396 \%	2.439 \%	2.743 \%

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity
Position Resolution

Position Calculation

 Energy Dependence BeamspotTime Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Multiplicity at Different Thresholds

- Left: Multiplicity with energy threshold of 0.76 MeV for a photon energy of 1.058 GeV
- Right: Energy dependence of multiplicity at thresholds of $0.76,1,3$ and 10 MeV

The PROTO60

Energy Resolution

 Cosmic Calibration Different Arrays MultiplicityPosition Resolution

Position Calculation

Energy Dependence

 BeamspotTime Resolution
Without Corrections Timewalk Correction Time Resolution of the Gentral Detector

Position of the Beam

Calculation of the Point of Impact

- Center of gravity algorithm with a logarithmic weighting

$$
\begin{gathered}
X_{\text {calc }}=\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} ; \quad \quad E_{T}=\sum_{i} E_{i} \\
w_{i}= \begin{cases}0 & , W_{0}+\ln \left(\frac{E_{i}}{E_{T}}\right) \leq 0 ; \\
W_{0}+\ln \left(\frac{E_{i}}{E_{T}}\right) & , \text { else; }\end{cases}
\end{gathered}
$$

- Ideal weighting parameter should deliver a Gaussian distribution with low σ
- A value of $W_{0}=5.3$ was chosen
- All calculations without taking into account time information of the individual crystal

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity

Position Resolution

Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Calculated Position Distributions

- Position distributions for different beam positions
- All 15 photon energies included

The PROTO60

Energy Resolution

 Cosmic Calibration Different Arrays Multiplicity
Position Resolution

Position Calculation
Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Calculated Results

- Linear correllation between calculated and real position
- Statistical error better when shooting in between
- Systematical error increases with distance to crystal center

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution Without Corrections Timewalk Correction Time Resolution of the Central Detector

Energy Dependence of Resolution

- Position calculation indpendent of incident photon energy
- Position resolution energy dependence obtained by fit:

$$
\sigma_{y} \approx \sigma_{x}=1.087 \mathrm{~mm}-\frac{0.464 \mathrm{~mm}}{E / \mathrm{GeV}}+\frac{3.822 \mathrm{~mm}}{\sqrt{E / G e V}}
$$

Performance of the PROTO60

Daniel Bremer

The PROTO60
Energy Resolution Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Size of the Beam

- Above:

Expected beamspot size calculated from setup geometry

- Size: Diameter

$$
\mathrm{d}=9 \mathrm{~mm}
$$

- Right:

Reconstructed Beamspot with Projection in X

- Size:

$$
\begin{aligned}
& \sigma=6 \mathrm{~mm} \\
& \text { FWHM }=14 \mathrm{~mm}
\end{aligned}
$$

Beamspot at W_0=5.300000

The PROTO60

Time Information

- There was time information available against " central" crystal (35) for:
- Each other crystal of the PROTO60
- The 15 Tagger Channels
- The Veto
- Constant Fraction Discriminators (CFDs) were used to get a proper timing information
- BUT: No huge effort to minimize walk effects
- Therefore we expected a Time Walk of the crystal time versus deposited energy
- Assuming the tagger time has no walk

Performance of the PROTO60

Daniel Bremer

The PROTO60
Energy Resolution Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections
Timewalk Correction
Time Resolution of
the Central Detector
Conclusion/Outlook

Tagger Time vs. Crystal 35

TimeWalk After Calibration

Performance of the PROTO60

Daniel Bremer

The PROTO60
Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction Time Resolution of the Central Detector

Tagger Time vs. Crystal 35

TimeWalk After Calibration

- Fitting Time Walk with 4 parameter function also used by TAPS-Group this purpose:

$$
t(E)=A \cdot e^{B \cdot \sqrt{E}+C \cdot E}+D
$$ PROTO60

Daniel Bremer

The PROTO60
Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution Without Corrections
Timewalk Correction Time Resolution of the Central Detector

Timewalk Correction

Timewalk After Correction

- Spectrum after substraction of the fitted function PROTO60

Daniel Bremer

The PROTO60
Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections
Timewalk Correction
Time Resolution of the Central Detector

Conclusion/Outlook

Timewalk Correction

Timewalk After Correction

- Spectrum after substraction of the fitted function

Daniel Bremer

The PROTO60
Energy Resolution
Cosmic Calibration Different Arrays Multiplicity

Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections Timewalk Correction
Time Resolution of the Central Detector

Conclusion/Outlook

Resolution of the Central Detector

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity
Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections

$$
\sigma_{t}=\sqrt{(411.8 \mathrm{ps})^{2}+\left(\frac{538.1 \mathrm{ps}}{\sqrt{E / \mathrm{GeV}}}\right)^{2}} \hat{=} 677.6 \mathrm{ps} \text { at } 1 \mathrm{GeV}
$$

The PROTO60

Energy Resolution Cosmic Calibration Different Arrays Multiplicity
Position Resolution
Position Calculation Energy Dependence Beamspot

Time Resolution
Without Corrections

Resolution of the Central Detector

- Time resolution energy dependence obtaind by fit:

$$
\sigma_{t}=\sqrt{(411.8 \mathrm{ps})^{2}+\left(\frac{538.1 \mathrm{ps}}{\sqrt{E / \mathrm{GeV}}}\right)^{2}} \hat{=} \underline{\underline{677.6 \mathrm{ps} \text { at } 1 \mathrm{GeV}}}
$$

Conclusion/Outlook

We obtain the following resolutions for the PROTO60:

- The Energy Resolution is about 2.396 \% at $\mathbf{1 ~ G e V}$:

$$
\frac{\sigma}{E}=0.626 \%+\frac{1.770 \%}{\sqrt{E / G e V}}
$$

- The Position Resolution of the PROTO60 is below 4.44 mm at 1 GeV :

$$
\sigma_{x}=1.087 \mathrm{~mm}-\frac{0,464 \mathrm{~mm}}{E / \mathrm{GeV}}+\frac{3,822 \mathrm{~mm}}{\sqrt{E / \mathrm{GeV}}}
$$

- The Time Resolution of the central crystal is about 677.6 ps at 1 GeV :

$$
\sigma_{t}=\sqrt{(411.8 \mathrm{ps})^{2}+\left(\frac{538.1 \mathrm{ps}}{\sqrt{E / G e V}}\right)^{2}}
$$

