Lightpulser Studies

Christof Motzko

Experimentelle Hadronenphysik Ruhr-Universität Bochum

September 9th, 2009

Overview

- Light pulser foreseen to check the proper operation of all EMC channels
- Radiation damages reduce the light transmittance of PWO
- With a light pulser the detection of radiation damages of the crystals and photodetectors is also possible
- Requirements for the light pulser
 - Puls form like PWO signal
 - Different colors (blue, green, red)
 - High light output
 - Intensity variation in a wide range (1:1000)
 - Small dimensions

Planned setup

- ▶ Blue LED with lens to focus the light at the light mixer
- Red and green LED mounted close to the lens
- LCD attenuator between lens and light mixer

Blue LED-Pulser

- Blue light pulser for the detection of the radiation damages of the crystals
- Different light pulsers were tested
- Small driver unit
- Rise time of the light puls is similar to the PWO signal
- ▶ Needs high voltage (U = 700 V)

LEDs

	intensity / a.u.	
	FRAEN	CARCLO
Luxeon Rebel	0.72	1
Luxeon K2	0.36	0.33
Luxeon V	0.57	0.38
Luxeon III	0.43	0.41
Luxeon I	0.33	

- Different LEDs with lenses from 2 manufacturer were tested
- ► The Luxeon Rebel with the Carclo lens have the highest light intensity

Transmittance of LCD

- Advantages of LCDs:
 - No moving elements, control of transmittance by voltage
 - ▶ No maintenance
- 2 LCDs are required for dynamic range of 1:4600
- Minimal attenuation by LCDs
 - ▶ 1 LCD: 69 %
 - 2 LCDs: 82 %

Light Intensity

- ► The light intensity of the pulser depends on the temperature
- ▶ Light intensity decreases about 25 % between 20 °C and -25 °C
- ► The maximum light intensity for the planned setup (at 20 °C) is equivalent to about 14 GeV

Radiation hardness

- ► Test of radiation hardness with a dose of 720 Gy (dose rate: 200 Gy/h)
- During the radiation:
 - Light intensity decreases about 10 %
 - Current of the voltage supply for the ICs rise from 3 mA to 16 mA
- After the radiation the light intensity rised about 6 % and the current decreases to 3 mA after some days

Red and green LED-Pulser

- Red and green LEDs to detect the radiation damages of the photodetectors
- Use of Kapustinskys pulser
 - No high voltage supply
 - Small driver unit
 - Low light intensity
 - Light puls not similar to PWO signal

Optical fibers

- Optical fibers are mounted with optical grease to the light mixer to increase the light intensity about 33 %
- Optical grease between optical fiber and crystal increase the light intensity about 50 %
- For a high light intensity and a small bending radius 4 fibers of 200 µm will be used (R_{bend} = 6 cm)
- With this combination 400 crystals can be monitored by

one pulser

Summary and Outlook

- The presented LED-Pulser creates light pulses with short rise time which is similar to PWO signals
- The control of the light intensity by LCDs is possible, but they require a light source with a higher light intensity
- The light pulser is small and can be mounted close to the crystals
- Outstanding R&D
 - Increase the light intensity
 - Coupling of red and green LED