

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

Quality status PANDA collaboration meeting, Jülich 7-11 June 2009

Tobias Eißner, Markus Moritz, Daniel Bremer, Till Kuske, Valera Dormenev and Rainer Novotny

University Gießen — 2nd Institute of Physics

09.09.2009

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

e bas<mark>q</mark>

Outline

Quality status

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setup Input Parameters

Results

Status Report Delivery Status Quality Status

Conclusion

1 Simulations with LITRANI concerning Light Collection

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- Introduction
- Inserted Setup
- Input Parameters
- Results
- Interpretation

2 Status Report

- Delivery Status
- Quality Status

3 Conclusion

Initial Motivation

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction

Inserted Setu Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

LY distribution of the first 4 lots measured at CERN3575 EC and 375 Type 1 geometry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

o and a

Initial Motivation

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction

Inserted Setu Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

LY distribution of the first 4 lots measured at CERN3575 EC and 375 Type 1 geometry

 \Rightarrow LY strongly depending on the geometry!

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- イロト イロト イヨト イヨト ヨー シタの

Inserted Setup

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation
- Status Report Delivery Status Quality Status
- Conclusion

- PMT with real Quantum Efficiency: Hamamatsu R2059, QE(420 nm) $\approx 20\%$
- radioactive source: $^{137}Cs \rightarrow 662 \text{ keV photons}$
- source will be shifted successively in steps of 2 cm

Input Parameters

Quality status

panda

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup

Input Parameters

Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

- PbWO₄ as uniaxial negative birefringent
- cross sections for Photo effect and Compton scattering for PbWO₄ at 662 keV
- fluorescence component at 420 nm
- indices of refraction for PbWO₄, aluminimum coverage and entrance window of PMT

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

Input Parameters

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input

Parameters

Results Interpretatic

Status Report Delivery Status Quality Status

Conclusion

- PbWO₄ as uniaxial negative birefringent
- cross sections for Photo effect and Compton scattering for PbWO₄ at 662 keV
- fluorescence component at 420 nm
- indices of refraction for PbWO₄, aluminimum coverage and entrance window of PMT

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

🖞 no optical coupling between crystal and PMT

distance PMT / cm

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY? $Remember: \frac{<LY_{Type 1}>}{<LY_{EC}>} = 1.40$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY? Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

■ LY is calibrated with a CS-source (662 keV)

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results

Status Repor Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY? $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{i=1}^{n}$

- Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$
- LY is calibrated with a CS-source (662 keV)
- $I_{ABS}^{662 \text{ keV}} = [\varrho_{PWO} \cdot (\mu_{Photoeff.} + \mu_{Compton})]^{-1} = 2.589 \text{ cm}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quality status

ō a n d a

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY?

- Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$
- LY is calibrated with a CS-source (662 keV)
- $I_{ABS}^{662 \text{ keV}} = [\varrho_{PWO} \cdot (\mu_{Photoeff.} + \mu_{Compton})]^{-1} = 2.589 \text{ cm}$
- Roughly 80% of the incident energy is deposited within the first 4 cm

(日) (日) (日) (日) (日) (日) (日) (日)

Interpretation

Quality status

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setuy Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

ō a n d a

Interpretation

Quality status

Tobias Eißnei

Simulations with LITRAN

Introduction Inserted Setur Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY?

- Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$
- LY is calibrated with a CS-source (662 keV)
- $I_{ABS}^{662 \text{ keV}} = [\varrho_{PWO}(\mu_{Photoeff.} + \mu_{Compton})]^{-1} = 2.589 \text{ cm}$
- Roughly 80% of the incident energy is deposited within the first 4 cm

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

Interpretation

Quality status

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setu Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY?

- Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$
- LY is calibrated with a CS-source (662 keV)
- $I_{ABS}^{662 \text{ keV}} = [\varrho_{PWO}(\mu_{Photoeff.} + \mu_{Compton})]^{-1} = 2.589 \text{ cm}$
- Roughly 80% of the incident energy is deposited within the first 4 cm

$$\Rightarrow \frac{\int_{16 \text{ cm}}^{20 \text{ cm}} \epsilon_{\text{Type 1}}}{\int_{16 \text{ cm}}^{20 \text{ cm}} \epsilon_{\text{EC}}} = 1.398$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Interpretation

Quality status

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setu Input Parameters Results

Status Report Delivery Status Quality Status

Conclusion

How to normalize the simulation results to the obtained LY?

- Remember: $\frac{\langle LY_{Type 1} \rangle}{\langle LY_{EC} \rangle} = 1.40$
- LY is calibrated with a CS-source (662 keV)
- $I_{ABS}^{662 \text{ keV}} = [\varrho_{PWO}(\mu_{Photoeff.} + \mu_{Compton})]^{-1} = 2.589 \text{ cm}$
- Roughly 80% of the incident energy is deposited within the first 4 cm

$$\Rightarrow \frac{\int_{16 \text{ cm}}^{20 \text{ cm}} \epsilon_{\text{Type 1}}}{\int_{16 \text{ cm}}^{20 \text{ cm}} \epsilon_{\text{EC}}} = 1.398$$

 \Rightarrow <u>LY values understandable</u>

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Delivery Status

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation Status Repor
- Delivery Status Quality Status
- Conclusion

Туре		Lot B1 - B4	Lot B5	Lot B6	Lot B7	Lot B8	Lot B9
End Cap		4400					
Backward EC						70	630
Barrel	Type 1	375		270	695		
	Type 2					140	
	Туре 9			330	325		
	Type 10					120	
Total		4775		600	1020	330	630
Delivered?		√		~	~	✓	✓
Present station		Giessen		Giessen		CERN	Giessen

 \Rightarrow 3950 crystals (4 lots) pass all quality test stations and are completely analyzed

Longitudinal Transmission <u>4 Lots</u>

Quality status

Tobias Eißner

Quality Status

	Mean Values / %				
Facility	360 nm	420 nm	620 nm		
ВТСР	50.41	71.83	76.07		
CERN	50.96	71.22	75.25		
Gießen	49.15	71.07	77.02		
Specification limit	35	60	70		

Longitudinal Transmission 4 Lots

Quality status

Tobias Eißner

Quality Status

	Mean Values / %				
Facility	360 nm	420 nm	620 nm		
ВТСР	50.41	71.83	76.07		
CERN	50.96	71.22	75.25		
Gießen	49.15	71.07	77.02		
Specification limit	35	60	70		

 \Rightarrow no crystal is below the threshold \surd

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Transversal Transmission BTCP and CERN - 6 Lots

Quality status

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setup Input Parameters Results Interpretation Status Repor

Quality Status

Conclusion

Transversal Transmission BTCP and CERN - 6 Lots

Tobias Eißner

Simulations with LITRAN

Introduction Inserted Setup Input Parameters Results Interpretation Status Repor Delivery Status

Quality Status

Conclusion

 \Rightarrow no crystal is above the threshold \surd

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - の Q ()

Light Yield CERN - 6 Lots

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ □ ● ◆ ○ へ ○

Light Yield CERN - 6 Lots

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

 \Rightarrow 7 crystals are out of specification $\frac{1}{2}$

Radiation Hardness Gießen - 4 Lots

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Radiation Hardness Gießen - 4 Lots

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Report Delivery Status Quality Status

Conclusion

 \Rightarrow 391 crystals are out of specification \oint

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation
- Status Report Delivery Status Quality Status

Conclusion

■ Geometry depending LY distributions are understandable: ⇒ higher LY due to more pronounced focussing effect

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation
- Status Report Delivery Status Quality Status

Conclusion

- Geometry depending LY distributions are understandable: ⇒ higher LY due to more pronounced focussing effect
- The first four lots (3950 crystals) are completely analyzed

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation
- Status Report Delivery Status Quality Status

Conclusion

- Geometry depending LY distributions are understandable: ⇒ higher LY due to more pronounced focussing effect
- The first four lots (3950 crystals) are completely analyzed

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

Altogether: 391 crystals are out of specification

Quality status

Tobias Eißner

Simulations with LITRANI

- Introduction Inserted Setup Input Parameters Results Interpretation
- Status Report Delivery Status Quality Status

Conclusion

- Geometry depending LY distributions are understandable: ⇒ higher LY due to more pronounced focussing effect
- The first four lots (3950 crystals) are completely analyzed

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー のく⊙

- Altogether: 391 crystals are out of specification
- Interesting: Δk development for the further lots

Quality status

Tobias Eißner

Simulations with LITRANI

Introduction Inserted Setup Input Parameters Results Interpretation

Status Repor Delivery Status Quality Status

Conclusion

Thank you for attention!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ