

Signal analysis for PWO readout with 2 LAAPD on one side

<u>E. Guliyev</u>, M. Kavatsyuk, P.J.J. Lemmens, H. Löhner, T.Poelmann, G. Tambave

> XXX PANDA MEETING 7- 11 September 2009 Jülich, Germany

Analysis scheme for 2 LAAPD on one side

Energy analysis

Time analysis

university of 7-11/IX/ 2009 groningen

Experimental setup

For measurement were used: $20x20x200 \text{ mm PbWO}_4$ $1 \text{ cm}^2 \text{ LAAPD }$ gain x 50 @ room temperature100 MHz 16 Bit SADC (STRUCK) $HV_{BandA} = 393 \text{ V}; I_d = 37 \text{ nA}$ $HV_C = 405 \text{ V}; I_d = 32 \text{ nA}$

Measurement and analysis scheme:

ANL – analysis like in FPGA

Energy information

Energy distribution for <u>single</u> and <u>averaged</u> traces

σ from Gauss fitting for single trace from one LAAPD = 1.7 % averaged trace from sum of two LAAPD = 1.3 %

XXX Panda Meeting

Energy information

Energy information

{signal amplitude ~ 400 mV}

	Ch A	Ch B	Ch C	Individual trace (ANL(A) +ANL(B))/2	Average trace ANL((A+B)/2)
Energy resolution(%)	1.7	1.7	1.52	1.25	1.27
Noise level (mV)	3.61	3.76	3.78		2.86
Noise ratio	1.27	1.32	1.32		1

Energy resolution better for sum of signals !

Little correlated noise for LAAPD's !

XXX Panda Meeting

Timing analysis

For time resolution we measure the difference of time stamp between:

 $\Delta t = t_{C} - t_{A}$ $\Delta t = t_{C} - t_{B}$ $\Delta t = t_{C} - (t_{A} + t_{B})/2$ $\Delta t = t_{C} - t_{(A+B)/2}$

Time resolution =
$$\Delta t/\sqrt{2}$$

Timing analysis

XXX Panda Meeting

Timing analysis

	$\mathbf{A}\mathbf{t} = \mathbf{t}_{\mathrm{C}} - \mathbf{t}_{\mathrm{A}}$	$\blacktriangle t = t_{\rm C} - t_{\rm B}$	$\Delta t =$ = $t_{\rm C} - (t_{\rm A} + t_{\rm B})/2$	$\Delta t = t_{C} - t_{ANL((A+B)/2)}$
∆Time(rms) (ns)	1.50	1.52	1.33	1.36
Time resolution, $\Delta t/\sqrt{2}$ (ns)	1.06	1.07	0.94	0.96

Time resolution is improved for **2-LAAPD readout** !

Conclusion:

- For better light collection (and redundancy)
 2 LAAPD were coupled to one face of a crystal.
- 2. For low power consumption of FPGA and lower threshold it is useful to sum the digitized signals before the analysis
- 3. Measured traces were averaged either before or after the digitization.
- In both cases the energy and timing resolutions improve. Energy resolution improved by $\approx 1/\sqrt{2}$ and time resolution improved by $\approx 12\%$

