

Event-by-event pulse pileup recovery for PWO readout with LAAPD

G. Tambave, E. Guliyev, M. Kavatsyuk, H. Löhner

XXXth PANDA Collaboration Meeting 7-11 sept. 2009, IKP, Jülich

Pileup generation:

Analysis for single pulse:

A – pulse amplitude & I – pulse integral

Trace: single pulse

KVI 🎆 / university of groningen

 * The relation between pulse amplitude & pulse integral is expected to be linear.

* The relation will not be linear if,(i) Pulse shape is changing or

(ii) There is pulse pileup

* The ratio of amplitude and

pulse integral has to be constant.

Analysis for single pulse:

The relation is linear

Amplitude (mV) vs Pulse integral:

Pileup identification:

Amplitude(mV) vs Pulse integral

1. Delay time 41ns to 201ns: both pulse amplitudes are summed and treated as a single pulse

2. Delay time 240ns to 560ns: the second pulse amplitude is piled up on the first pulse. So with variation of delay time the blob position is changing.

3. Delay time 610ns to 1.2 μ s: the pulses are well separated, amplitudes $A_1 \& A_2$ are seen with their own integral.

4. Noise.

(1) Get the amplitude (A_1) of first pulse

- (2) Take integration (I) of both pulses
- (3) $A_2 = \{(I/k) A_1\}$

Where, I - integral k- calibration constant A₁- amplitude(pulse1) A₂- amplitude(pulse2)

(4) $A_1 \& A_2$ will be pileup-recovered amplitudes.

Pileup Trace:

Analysis:

panda

 A_{ref_1} : Reference amplitude of pulse 1 A_{ref_2} : Reference amplitude of pulse 2 $A_{ref_{1}} = 213 mV$ $A_{ref_{2}} = 161 mV$

Trace : 1.2µs delay time

Delta_E1(%) = { $(A_1/A_{ref 1}) - 1$ }x100

Where, A_{ref_1} : reference amplitude & A_1 : amplitude of pulse 1

The pulse is not getting recovered below delay time of 240ns due to the rise time of ASIC

Pileup recovery: pulse 2

Delta_E2(%) =
$$\{A_2/A_{ref_2} - 1\} \times 100$$

Where, A_{ref_2} : reference amplitude & A_2 : amplitude of pulse 2

Since the pulses are well separated above delay time of 610ns, pulse 2 is treated as single pulse and its amplitude is found without pulse integration.

Energy resolution: 560ns delay time

Energy resolution (%) = $(\sigma/A_{ref}) \times 100$ (pileup recovered) = 2.7 % (pulse 1) & 4.8 % (pulse 2)

Energy resolution: recovered pulses

- 1. Pileup is recovered above delay time of \sim 240ns.
- 2. The rise time of ASIC is the reason for non recovery of pileup below 240ns.
- 3. At higher event rate, without recovery the probability of pileup is 6.1%.
- 4. The Panda TDR assumes for 100kHz event rate a pileup probability of 1%.
- 5. In the present analysis, the pileup probability remaining after recovery is reduced to 2.4 %

