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Introduction
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The Silicon strip sensor
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sensor specifications

APV
data connection

thickness 300.0 um information about modules
length 2.082 cm @ APV not self triggering
width 2.082 cm 64nd ch |
pitch p-side  50.0 um - o enEhie

pitch n-side  50.0 um unbonded

stereo angle  90.0 degree @ sensor not radiation hard
channels per side 385 L
channels per APY. 128 @ producer of chips itc irst




Introduction
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Setup of the test station

photo multiplier scintillator temperature sensor

supply board heating sensor board sensor

Inside the test station

@ stable place holders of the sensor board(s) to position
radioactive sources

@ scintillator to trigger on events

@ heating to characterise the modules at different
temperatures

@ characterisation scans as well as measurements possible
@ quick change of boards and radioactive sources possible
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The characterization scans

The first steps with the sensor

@ quality check of the sensor
@ find the optimal working point of the sensor
@ get parameters to switch to physical units

e.g. converting ADC values to electrons of the deposit
energy

@ plateau until breakdown




The characterization scans
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Leakage current scan

Aims of the leakage current scan

@ quality check of the sensor

@ depletion and breakdown voltage

@ until depletion voltage rising leakage current
lie < v/ Vipias

@ plateau until breakdown




The characterization scans
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Leakage current scan

single sided readout module 15 double sided readout module 24
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@ for single sided readout modules known operation voltage
@ no information for the double sided read out
— leakage current behavior not understood




The characterization scans
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Noise scan

Aims of the noise scan

@ quality check of the sensor noise

@ depletion voltage

@ until depletion voltage rising noise

@ noise proportional to capacitance of sensor
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The characterization scans
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Noise scan

single sided readout module 15 double sided readout module 24

=]
%

depletion voltage: (37.4 £ 9.7V

FP NN
G U R

1 | L J
20 20 60 80 100 120 14
bias voltage [V]

@ stable noise after full depletion

@ depletion voltage found for both modules

— working voltage also known for double sided readout
module




Sensor dependencies

Temperature influence

Radiation damages

@ influence on the sensor @ changing the structure of

@ influence on the atomic lattice
electronics @ at high fluencies type
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Sensor dependencies
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Temperature dependency

Temperature Scan results
@ breakdown and plateau mix with higher temperature
@ depletion voltage not temperature dependent

Module 3 Module 16
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Temperature dependency

Getting energy gap
@ Energy gap from temperature scan

Sensor dependencies
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Egap

@ parameterize with [,c = Ip- T? - e 2ks'T
@ near the value of Egzp = 1.12 eV from literature
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Sensor dependencies
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Temperature dependency

After long time measurement

@ behavior during a five weeks measurement

@ module 15 and 16 were used
_ _Egap
@ parameterize with [jc = lp- T? - e ZksT
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Sensor dependencies
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Radiation dependency

neutron radiation sources
@ Low power educational reactor of the TU Dresden
@ Americium-241/Beryllium source
@ breaks between irradiation to scan leakage current

reactor cross section radioactive source
Control rods ‘\ /r;gjx
\ \
gj |
Graphite mirror N2 Barite concrete L

Air gap

Used tangential channel
Professur fir Wasserstoff- und Kernenergietechnik



Sensor dependencies
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Radiation dependency

Behavior of leakage current

@ fluence calculated to 1 MeV neutron equivalent
@ depletion voltage shows no significant shift

reactor module source module
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Sensor dependencies
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Radiation dependency

The differential volume current

@ linear parameterisation of the volume current
Sl — o 0 with o = 8.0 - 10717 2
(Gerhard Lutz "Semiconductor Radiation Detectors")

@ measurement in the same order of magnitude, but very low
statistic

reactor module source module
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Radiation dependency

Sensor dependencies
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Annealing effects after irradiation
@ back drifting caused by thermal movement
@ activating electrically inactive effects
@ temperature dependent

reactor module
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Sensor dependencies
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Radiation dependency

Annealing effects after irradiation

@ reactor module got damaged during measurement
@ source module anneals very fast

reactor module source module
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Measurements with sources

Aims of the detector
@ crossing charged particle causes charge cloud in sensor
— detect all electron hole pairs

— reconstruct interaction point
— reconstruct energy loss




Measurements with sources

Reconstruction algorithms

Hit Finder

&
Y

Channel n-side

t
Channel p-side

Reconstruction problem

@ merge the appropriate clusters from n and p side
— no individual cells causes ghost hits

— find clusters with nearly same charge sum

— finding optimal combination with all hit candidates
—

get Likelihood value for every combination from charge
differences of all hit candidates




Measurements with sources
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Measurement results

Reconstruction results
@ measurement with an SOIC as object

@ single sided readout with two modules causes multi
scattering

@ reconstruction algorithms work fine

single sided readout with double sided readout
module 15 and 16 with module 24
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Measurements with sources
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Measurement results

Energy loss and energy correlation

@ energy loss fitted with function of GAUSS and LANDAU functions
@ correlation show hit misidentifications

@ mobility of holes lower than for electrons

— difference is a factor of 0.87

energy loss energy loss correlation
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Measurements with sources
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Measurement results

Noise during measurement

@ signal to noise ratio p-side (25.0 + 0.9)
@ signal to noise ratio n-side (19.6 + 0.8)
@ caused by different mobility of the charge carriers

n-side p-side
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Measurements with sources
[e]e]e] o]

Measurement results

Different cluster sizes
@ depending on energy and particle
@ Strontium-90 electrons causes multi scattering
@ photons activate mainly one strip

Strontium-90 Cosmic Americium-241

Module #24 rphaz
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Measurements with sources
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Measurement results

Error in the calibration

@ mean of energy loss too low

@ measuring photon energy spectrum of Americium-241
— 59.54 keV photon energy

@ factor of 2 gives the right energy deposit
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Measurements with sources

Resolution limits

Simulation of electrons exposition Simulation results

@ Simulation with Geant4 by using @ resolution below the half of strip
Panda Root pitch
@ electron energy of @ bad values for binary and n
Exin,e- = (30.0 £5.0) MeV algorithms
@ simulated noise of 2000 — n algorithm better for sensors
electrons with unbonded strips
Algorithm accuracy Algorithm comparisom
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Summary

Summary

@ characterisation of sensor modules possible

@ first tests with double sided readout modules

@ temperature behavior is understood

o first experience with behavior during irradiation

@ reconstruction algorithm for hits working fine

@ found error in calibration by using photon sources



Summary

@ gain experience with double sided readout modules

@ measurements during irradiating, especially to understand
signal behavior

@ tracking station for working with more modules and test
tracking algorithms

@ fix parameters for new sensors
@ implement preprocessing to FPGA
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