ntroduction	The characterization scans	Sensor dependencies	Measurements with sources	
00				

Summary

Status of Silicon strip sensor characterisation

Lars Ackermann

TU Dresden, Germany

XXX PANDA Meeting, Jülich, September 8, 2009

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary

Outline

Introduction

- The Silicon strip sensor
- Setup of the test station

2 The characterization scans

- Leakage current scan
- Noise scan

Sensor dependencies

- Temperature dependency
- Radiation dependency

4 Measurements with sources

- Reconstruction algorithms
- Measurement results
- Resolution limits

Introduction ●○	The characterization scans	Sensor dependencies	Measurements with sources	Summary
The Silicon strip	sensor			

sensor specifications

thickness	300.0	μm
length	2.082	ст
width	2.082	ст
pitch p-side	50.0	μm
pitch n-side	50.0	μm
stereo angle	90.0	degree
channels per	side	385
channels per	APV	128

information about modules

- APV not self triggering
- every 64nd channel unbonded
- sensor not radiation hard
- producer of chips itc irst

Inside the test station

- stable place holders of the sensor board(s) to position radioactive sources
- scintillator to trigger on events
- heating to characterise the modules at different temperatures
- characterisation scans as well as measurements possible
- quick change of boards and radioactive sources possible

ntroduction	The characterization scans	Sensor dependencies	Measurements with sources	Sum
00				

The first steps with the sensor

- quality check of the sensor
- find the optimal working point of the sensor
- get parameters to switch to physical units
 e.g. converting ADC values to electrons of the deposit energy
- plateau until breakdown

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary
	0000			

Leakage current scan

Aims of the leakage current scan

- quality check of the sensor
- depletion and breakdown voltage
- until depletion voltage rising leakage current

 $I_{lc} \propto \sqrt{V_{bias}}$

plateau until breakdown

Introduction	The characterization scans 0000	Sensor dependencies	Measurements with sources	Summary
Leakage current so	an			

single sided readout module 15

double sided readout module 24

Results

- for single sided readout modules known operation voltage
- no information for the double sided read out
- \rightarrow leakage current behavior not understood

Introduction	The characterization scans ○○●○	Sensor dependencies	Measurements with sources	Summary
Noico coan				

Aims of the noise scan

- quality check of the sensor noise
- o depletion voltage
- until depletion voltage rising noise
- noise proportional to capacitance of sensor

$$C \propto rac{1}{\sqrt{V_{bias}}}$$

Results

- stable noise after full depletion
- depletion voltage found for both modules
- → working voltage also known for double sided readout module

Sensor dependencies

Measurements with sources

Temperature influence

- influence on the sensor
- influence on the electronics

Radiation damages

- changing the structure of atomic lattice
- at high fluencies type inverting

Frank Thuselt "Physik der Halbleiterbauelemente"

Gerhard Lutz "Semiconductor Radiation Detectors"

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary
Temperature depe	ndencv			

Temperature Scan results

- breakdown and plateau mix with higher temperature
- depletion voltage not temperature dependent

Module 3

Module 16

Introduction	The characterization scans	Sensor dependencies ○●○○○○○○	Measurements with sources	Summary
Temperature depe	endency			

Getting energy gap

- Energy gap from temperature scan
- parameterize with $I_{LC} = I_0 \cdot T^2 \cdot e^{-\frac{E_{gap}}{2 \cdot k_B \cdot T}}$
- near the value of $E_{gap} = 1.12 \, eV$ from literature

Module 3 at 80V

Module 16 at 60V

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary
Temperature de	pendency			

After long time measurement

- behavior during a five weeks measurement
- module 15 and 16 were used

• parameterize with
$$I_{LC} = I_0 \cdot T^2 \cdot e^{-\frac{L_{gap}}{2 \cdot k_B \cdot T}}$$

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summar
Radiation depende	ency			

neutron radiation sources

- Low power educational reactor of the TU Dresden
- Americium-241/Beryllium source
- breaks between irradiation to scan leakage current

reactor cross section

radioactive source

Professur für Wasserstoff- und Kernenergietechnik

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary		
Radiation dependency						

Behavior of leakage current

- fluence calculated to 1 MeV neutron equivalent
- depletion voltage shows no significant shift

reactor module

source module

statistic

reactor module

source module

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary
Radiation depende	ncy			

Annealing effects after irradiation

- back drifting caused by thermal movement
- activating electrically inactive effects
- temperature dependent

reactor module

source module

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary	
Radiation dependency					

Annealing effects after irradiation

- reactor module got damaged during measurement
- source module anneals very fast

reactor module

source module

Aims of the detector

- crossing charged particle causes charge cloud in sensor
- $\hookrightarrow\,$ detect all electron hole pairs
- \rightarrow reconstruct interaction point
- \rightarrow reconstruct energy loss

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summ
Reconstruction	algorithms			
Hit Find	er			

Reconstruction problem

- merge the appropriate clusters from n and p side
- \hookrightarrow no individual cells causes ghost hits
- $\rightarrow\,$ find clusters with nearly same charge sum
- $\rightarrow\,$ finding optimal combination with all hit candidates
- → get Likelihood value for every combination from charge differences of all hit candidates

Measurement results	
Reconstruction results	
 measurement with an SOIC as object 	ect
 single sided readout with two modu scattering 	ules causes multi
 reconstruction algorithms work fine 	,
single sided readout with module 15 and 16	double sided readout with module 24
todate #1 rph todate	U 100 100 100 100 100 100 100 100

Sensor dependencies

Measurements with sources

000000

Introc	luc	tic	

The characterization scan: 0000 Sensor dependencies

Measurements with sources

Summary

Measurement results

Energy loss and energy correlation

- energy loss fitted with function of GAUSS and LANDAU functions
- correlation show hit misidentifications
- mobility of holes lower than for electrons
- \rightarrow difference is a factor of 0.87

energy loss correlation

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary	
Measurement results					

Different cluster sizes

- depending on energy and particle
- Strontium-90 electrons causes multi scattering
- photons activate mainly one strip

Strontium-90

Cosmic

Americium-241

Introduction	The characterization scans	Sensor dependencies	Measurements with sources ○○○○○●○	Summa
Measurement resu	lts			

Error in the calibration

- mean of energy loss too low
- measuring photon energy spectrum of Americium-241
- → 59.54 keV photon energy
- factor of 2 gives the right energy deposit

Introduction 00 The characterization scans

Sensor dependencies

Measurements with sources

Resolution limits

Simulation of electrons exposition

- Simulation with Geant4 by using Panda Root
- electron energy of $E_{Kin,e^-} = (30.0 \pm 5.0) \, MeV$
- simulated noise of 2000 electrons

Algorithm accuracy

Simulation results

- resolution below the half of strip pitch
- bad values for binary and η algorithms
- $\rightarrow \eta$ algorithm better for sensors with unbonded strips

Algorithm comparisom

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary

Summary

- characterisation of sensor modules possible
- first tests with double sided readout modules
- temperature behavior is understood
- first experience with behavior during irradiation
- reconstruction algorithm for hits working fine
- found error in calibration by using photon sources

Introduction	The characterization scans	Sensor dependencies	Measurements with sources	Summary
Outlook				

- gain experience with double sided readout modules
- measurements during irradiating, especially to understand signal behavior
- tracking station for working with more modules and test tracking algorithms
- fix parameters for new sensors
- implement preprocessing to FPGA