Detector studies for stations 3 and 4

Anna Senger

2

Au beam intensity 10%/s

Particle rates (FLUKA)

Station 3

3

FLUKA vs CBMROOT

/1

FLUKA vs CBMROOT

Detector characteristics for stations 3 and 4:

5

Detector segmentation

Detector efficiency

Present muon system: 4 stations and 4 absorbers Absorbers: 60 cm C + (20+20+30) cm FeTRD 4 GEM stations with 1° radial segmentation total number of channels: 491340 $\mu +$ STS MuCh ToF Geometry 6

DETECTOR SEGMENTATION

1

in stations 3 and 4

9

Number of channels

Pad size

station 3

station 4

10

- Primary tracks ($\chi^2_{vertex} < 2$)
- Track quality in STS
 - long tracks: at least 7 STS hits
 - $\chi^2_{STS} < 2$
- Track quality in MuCh
 - long tracks
 - $\chi^2_{MuCh} < 1.5$
- Particle ID in ToF

Track selection criteria 11

ω + central Au+Au @ 8 A GeV

Stations 1 and 2: 3 layers per station with 1° segmentation

Stations 3 and 4:

 $1 \rightarrow 3$ layers per station with 1° segmentation 2 \rightarrow 3 layers per station with 2° segmentation 3 \rightarrow 3 layers per station with 5° segmentation

Results

DETECTOR INEFFICIENCY

in stations 3 and 4

13

ω + central Au+Au @ 8 A GeV

Stations 3 and 4:				
Detector selmentation	2°		5°	
Detector efficiency	100%	80%	100%	80%
ω efficiency	1.07	0.77	0.82	0.59
ω/background ratio	0.38	0.41	0.29	0.33

Stations 1 and 2:

3 layers per station with 1° segmentation and with 100% efficiency

Results

14

N of MuCh hits > 9, last hit in station 4

- increase number of detector layers in low-efficiency stations
- use different clustering procedure

Possibility to increase reconstruction efficiency 15

Detector segmentation	2 °		5 °	
№ of detector layers per station	3	4	3	4
Number of channels	62724	83632	10152	13536

Number of channels in stations 3 and 4

ω + central Au+Au @ 8 A GeV

Stations 1 and 2:

3 layers per station with 1° segmentation and with 100% efficiency

Stations 3 and 4:

 $1 \rightarrow 3$ layers per station with 100% efficiency

- $2 \rightarrow 3$ layers per station with 80% efficiency
- $3 \rightarrow 4$ layers per station with 80% efficiency

Results

17

• Digis (pads) \rightarrow cluster \rightarrow hit

for detectors with 100% efficiency (station 1 and 2)

 \rightarrow hit

for detectors with 80% efficiency (station 3 and 4)

Clusterization

	ω efficiency		ω/background ratio	
	cluster \rightarrow hit	digi \rightarrow hit	cluster \rightarrow hit	digi \rightarrow hit
Type A	0.77	0.89	0.41	0.36
Type B	0.59	0.78	0.33	0.32

Station 1 and 2: 1° segmentation, 100% efficiencyStation 3 and 4: 2° segmentation, 80% efficiency (type A)5° segmentation, 80% efficiency (type B)

Results

- <u>Muon detector segmentation</u>: the ω reconstruction efficiency and the signal-to-background ratio decreases by 10% (40%) when increasing the segmentation of detector stations 3 and 4 such that the number of channels is reduced by a factor of 4 (25). The total number of channels (stations 1-4) is reduced by a factor of 1.6 (2).
- Low efficiency detectors: the ω reconstruction efficiency is reduced by 20% for detectors with low (80%) efficiency, but could be compensated with increasing of detector layers inside absorber gap. Other solution to compensate the efficiency losses is a modification of the hit producer for low-efficiency stations.

Conclusions

