

The Effect of the Transverse Emittance of the HESR Beam on the Luminosity Monitor

September 8, 2009 | T. Randriamalala and J. Ritman

Outiline

Introduction and Motivation

HESR Beam Properties

Smearing of the DPM Output

Effect on the Luminosity Monitor

Conclusion

Introduction and Motivation

- Event generators used in pandaroot assume the primairy interaction is at x = y = z = 0, and each beam particle has exactly 4-momentum vector.
- This is not the actual situation:
 - Beam particles in a beam do not have the same 4-momentum:
 - \implies Angular smearing.
 - Collision may take place at various points
 - \implies Vertex smearing.
- Ignoring the emittance of the beam affects the luminosity measurement.

Antiproton Beam Properties

- At the IP, the emittance ε of the \bar{p} -beam is 1 mm mrad.
- $\varepsilon = 2\sigma_x \cdot 2\sigma_\theta$
 - σ_x : RMS of the transversal divergance of the beam.
 - σ_{θ} : RMS of the angular divergance of the beam.
- For σ_x ≤ 0.8mm, L_{eff} ≥ 0.8L_{max} because of the beam-target overlap (pellet target).

Smear of the DPM Output

Event-by-event smearing:

- Choose $\sigma_x = \sigma_y = 0.8 mm$.
- If $\sigma_x \leq 0.5 \times R$

 \implies Homogeneous "square" distribution of \bar{p} in the beam

with a side of $(2 \times \sigma_x)$.

D. Reistad, B. Galnander, K. Rathsman, A. Sidorin, "Calculations on High-Energy Electron Cooling in the HESR", Proceedings of COOL 2007, Bad Kreuznach. V.Ziemann, NIMA 556 (2006) 641.

where *R* is the cross section radius of the pellet flux $(R \sim 2mm)$.

• Gaussian smearing in the *z*-direction with $\sigma_z = R/2 = 1 mm$.

For the 3-momentum vectors \vec{p}_i ($i = \{p, \bar{p}\}$):

- Rotation of $\delta\theta$ around $\hat{n} = \frac{\vec{p}_i \times \hat{k}}{|\vec{p}_i| \cdot |\hat{k}|}$ $\delta\theta$ is a Gaussian distribution with $\sigma_{\theta} = 0.3$ mrad.
- Rotation of $\delta \varphi$ around \vec{p}_i .

 $\delta \varphi$ is an uniform distribution $[-\pi, +\pi]$.

• No correlation between $\delta\theta$ and $\delta\varphi$.

Simulated vertex and divergance distributions

T. Randriamalala and J. Ritman

Some aspects of the output of the DPM smeared (green curves) in comparison with the zero emittance DPM (blue curves) at 3.7 GeV/c beam momentum

T. Randriamalala and J. Ritman

Effect on the Luminosity Monitor

At 3.7*GeV/c* beam momentum: Reconstructed tracks vs MC-true

 Theta distribution and transfered momentum for zero-emittance DPM

 Effect of the transverse emittance on the luminosity monitor

September 8, 2009

Conclusion

- Transverse emittance of the p̄-beam has been considered.
- Smearing of the original DPM elastic scattering has been described
 - Smearing of the primary vertex, rotation on θ and φ of the 3-momentum vectors of the outgoing *p* and \bar{p} .
 - A new ROOT-file has been created.
- Effect on the luminosity monitor has been shown \Rightarrow Angular resolution $\ge 0.3 mrad$.