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Gaussian state approximation for real-

time dynamics of gauge theories:  

Lyapunov exponents and entanglement 

entropy  



Motivation 

Glasma state at early stages of HIC 

Overpopulated gluon states 

Almost “classical” gauge fields 

 Chaotic Classical Dynamics 

[Saviddy,Susskind…] 

• Positive Lyapunov 

exponents 

• Gauge fields forget 

initial conditions 

…but is it enough for Thermalization? 



Motivation 

Thermalization for quantum systems? 
• Quantum extension of Lyapunov 

exponents - OTOCs  <[P(0),X(t)]2> 

• Generation of entanglement 

between subsystems 

 

Timescales: quantum vs classical?  
  QFT tools extremely limited 

beyond strong-field classic regime… 

  …Holography provides intuition 



Bounds on chaos 

Reasonable physical assumptions 

Analyticity of OTOCs 

 

 
[Maldacena Shenker Stanford’15] 

 

• Holographic models with black 

holes saturate the bound(e.g. SYK) 

• In contrast, for  

   classical YM  

        What happens at low T ??? 

(QGP ~0.1 fm/c) 



N=1 Supersymmetric Yang-Mills in D=1+9: 

 Reduce to a single point = BFSS matrix model 

[Banks, Fischler, Shenker, Susskind’1997] 

N x N hermitian 

matrices 

Majorana-Weyl fermions,  

N x N hermitian 

Motivation 

System of N D0 branes joined by 

open strings [Witten’96]: 

• Xii
μ = D0 brane positions 

• Xij
μ = open string excitations 



Stringy interpretation: 

• Dynamics of gravitating D0 branes 

• Thermalized state = black hole 

• Classical chaos = info scrambling 
 

Expected to saturate the MSS bound 

at low temperatures! 

Classical chaos and BH physics 



In this talk: 
Numerical attempt to look at the 

real-time dynamics of BFSS and 

bosonic matrix models  

 

Of course, not an exact simulation, 

but should be good at early times 

 

Approximating all states by 

Gaussians 



Gaussian state approximation 
 Simple example:  

Double-well potential 

Heisenberg equations 

of motion 

Also, for example 



Next step: Gaussian Wigner function 

Assume Gaussian wave function at any t  

Simpler: Gaussian Wigner function 

For other 

correlators: use 

Wick theorem! 

Derive closed equations for  

x, p, σxx , σxp , σpp  



Origin of tunnelling 

Positive force even at x=0 

(classical minimum) 

Quantum force 

causes classical 

trajectory 

to leave classical 

minimum 



Gaussian state vs exact Schrödinger 

σ2=0.02 σ2=0.1 

σ2=0.2 σ2=0.5 

• Early-time evolution OK 

• Tunnelling period qualitatively OK 



2D potential with flat directions 
(closer to BFSS model) 

We start with a Gaussian wave packet at 

distance f from the origin  

(away from flat directions) 

Classic runaway 

 along x=0 or y=0 
 

Classically chaotic! 



Gaussian state vs exact Schrödinger 



Gaussian state approximation 

 Is good for at least two classical 

Lyapunov times 

 Maps pure states to pure states 

 Allows to study entanglement 

 Closely related to semiclassics 

 Is better for chaotic than for 

regular systems [nlin/0406054] 

 Is likely safe in the large-N limit 

X Is not a unitary evolution 



BFSS matrix model: Hamiltonian 

formulation 

a,b,c – su(N) Lie algebra indices 

Heisenberg equations of motion 



GS approximatio for BFSS model 

• CPU time ~ N^5 (double commutators) 

• RAM memory ~ N^4 

• SUSY broken, unfortunately … 



Ungauging the BFSS model 

• Gauge constraints 

• For Gaussian states we can only have a 

weaker constraint 

 

• We work with ungauged model 

[Maldacena,Milekhin’1802.00428]         
(e.g. LGT with unit Polyakov loops) 
 

• Ungauging preserves most of the 

features of the original model [1802.02985] 



Equation of state and temperature 

• Consider mixed Gaussian states with 

fixed energy E = <H> 

• Maximize entropy w.r.t. <xx>,<pp> 
• Calculate temperature using 

 

 

 

• Can be done analytically using 

rotational and SU(N) symmetries 



“Thermal” initial conditions 

• At T=0 pure “ground” state  

   with minimal <pp>,<xx> 

• At T>0 mixed states, interpret as 

mixture of pure states, shifted 

    by “classical”  coordinates  

    with dispersion <xx>-<xx>0 

• Makes difference for 

   non-unitary evolution 

• Fermions in ground  

    state at fixed classical 

    coordinates 



Energy vs temperature 

MC data from [Berkowitz,Hanada, Rinaldi, 

Vranas, 1802.02985], we agree for pure gauge 



<1/N Tr(Xi
2)> vs temperature 

MC data from [Berkowitz,Hanada, Rinaldi, 

Vranas, 1802.02985], we agree for pure gauge 



Real-time evolution: <1/N Tr(Xi
2)> 

Wavepacket spread vs classical shrinking 

For BFSS <1/N Tr(Xi
2)> grows, instability? 



Entanglement vs time 

Late-time saturation = information scrambling 

Entanglement entropy ~ subsystem size 



Lyapunov distances vs time 

Early times: Very similar to classical dynamics 

Late times: significantly slower growth 



Lyapunov vs entanglement: bosonic MM 

Entanglement saturates much faster than 

Lyapunov time, at high T – classical Lyapunov 

MSS: 

λL<2πT λL
0~T1/4 



Bosonic MM vs BFSS 

• No strong statements at low T: loss of SUSY 

• Non-chaotic confinement regime absent 

• Shortest timescale still for entanglement 

MSS: 

λL<2πT 

??? 



Summary 

• Longer quantum Lyapunov times vs. 

classical, important for MSS bound 
 

• “Confining” regime non-chaotic 
 

•  Full BFSS model chaotic at all T 
 

• “Scrambling” behavior for entanglement 

entropy 
 

• Entanglement timescale is the shortest 
 

• At high T governed by classic Lyapunov 



Summary 

• Gaussian state approximation: ~V2 

scaling of CPU time for QCD/ Yang-Mills 

• Feasible on moderately large lattices 

• Quantum effects on thermalization? 

• Topological transitions in real time  


