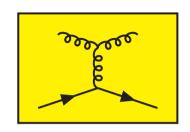
Heavy quarks in medium (from the lattice)¹

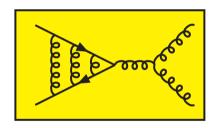
Mikko Laine

AEC, ITP, University of Bern

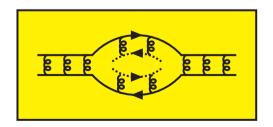
 $^{^{1}}$ Supported by the SNF under grant 200020-168988.


overall summary

what are we talking about?


- \Rightarrow charm and bottom quarks at $T\sim150...450~{
 m MeV}$
- \Rightarrow non-equilibrium: gluons and $N_{\rm f}$ light quarks are thermalized, charm and bottom quarks are probes in this background
- \Rightarrow bottom quark is non-relativistic ($m_b \sim 10...30~T$), charm quark is a borderline case ($m_c \sim 2...6~T$)

conceptual motivations


kinetic equilibration rate: how fast does velocity adjust to hydrodynamic flow?

chemical equilibration rate: how fast does number density adjust to Boltzmann weight?

quarkonium dissociation: do $q\bar{q}$ states propagate as scattering or bound states?

phenomenological motivations

kinetic equilibration rate:

D mesons show large v_2 in heavy ion collisions

chemical equilibration rate:

would we have $N_{\rm f}=2+2$ in future experiments?

bottomonium dissociation:

precision Υ studies in the LHC era

charmonium dissociation:

eternal questions on the fate of J/ψ

 \Rightarrow can we understand ingredients for these from lattice QCD?

general challenges

⇒ "usual" lattice systematics:

statistical signal for suppressed observables; finite-volume effects; continuum limit; topological freezing; non-perturbative renormalization; light dynamical sea quarks; ...

⇒ specific issues for thermal real-time rates:

- "easy": derivation of Kubo relations, i.e. expressing non-equilibrium physics in terms of equilibrium two-point correlators
- "exponentially hard": analytic continuation from euclidean to real time, particularly if spectral function contains narrow peaks²

² G. Cuniberti, E. De Micheli and G.A. Viano, *Reconstructing the thermal Green functions at real times from those at imaginary times*, cond-mat/0109175.

focus of this talk

• "exponentially hard": analytic continuation from euclidean to real time, particularly if spectral function contains narrow peaks²

² G. Cuniberti, E. De Micheli and G.A. Viano, *Reconstructing the thermal Green functions at real times from those at imaginary times*, cond-mat/0109175.

possible ways to facilitate analytic continuation

kinetic equilibration rate:

make use of HQET, reducing the observable to a gluonic correlator: the latter is believed to have a "flat" spectral shape

chemical equilibration rate:

make use of NRQCD, reducing the observable to a purely static measurement: no need for analytic continuation!

bottomonium dissociation:

make use of NRQCD or real-time potential models (\sim pNRQCD), to remove contribution from a transport peak

charmonium dissociation:

look at the pseudoscalar (η_c) rather than vector channel (J/ψ) , to remove contribution from a transport peak

kinetic equilibration rate

summary of recent developments

in full QCD there is a narrow $\sim \frac{\alpha^2 T^2}{M}$ transport peak³ accessible in HQET because can zoom inside the peak⁴ measurable with multilevel and other advanced techniques⁵ perturbative renormalization available up to NLO⁶ continuum limit can be taken within the quenched theory⁷

 $^{^3}$ P. Petreczky and D. Teaney, $Heavy\ quark\ diffusion\ from\ the\ lattice,\ hep-ph/0507318.$

⁴ J. Casalderrey-Solana and D. Teaney, $Heavy\ quark\ diffusion\ in\ strongly\ coupled\ \mathcal{N}=4$ $Yang\text{-}Mills,\ hep-ph/0605199;\ S.\ Caron-Huot,\ ML\ and\ G.D.\ Moore,\ A\ Way\ to\ estimate\ the\ heavy\ quark\ thermalization\ rate\ from\ the\ lattice,\ 0901.1195.$

⁵ H.B. Meyer, *The errant life of a heavy quark in the quark-gluon plasma*, 1012.0234; D. Banerjee, S. Datta, R. Gavai and P. Majumdar, *Heavy Quark Momentum Diffusion Coefficient from Lattice QCD*, 1109.5738.

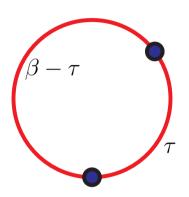
⁶ C. Christensen and ML, *Perturbative renormalization of ...*, 1601.01573.

⁷ A. Francis et al, Non-perturbative estimate of the heavy quark ..., 1508.04543.

observables of interest

diffusion equation for conserved number density:

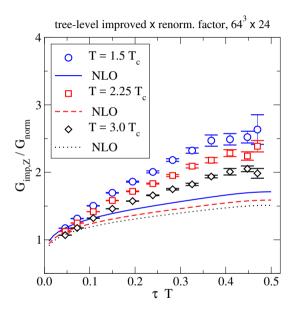
$$\partial_t n = D\nabla^2 n + \mathcal{O}(\nabla^4 n) .$$


diffusion equation for single particle momentum:

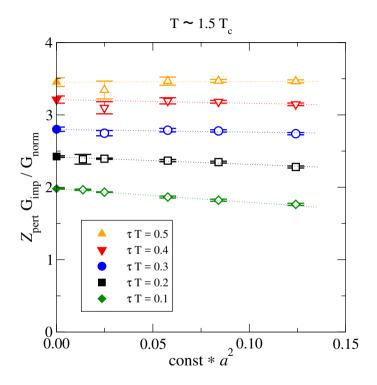
$$\dot{k}_i = -\Gamma_{\rm kin} k_i + \xi_i , \quad \langle \langle \xi_i(t) \xi_j(t') \rangle \rangle = \kappa \, \delta_{ij} \, \delta(t - t') .$$

relations:
$$D=2T^2/\kappa$$
, $\Gamma_{\rm kin}=\kappa/(2MT)$.

purely gluonic formulation for κ


$$G_{\rm E}(\tau) = -\frac{1}{3} \sum_{i=1}^{3} \frac{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;\tau} g E_i(\tau) U_{\tau;0} g E_i(0)] \rangle}{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;0}] \rangle} .$$

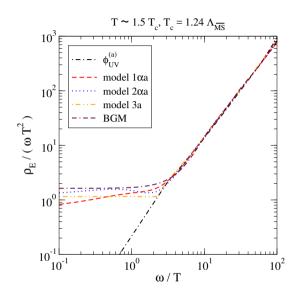
$$\kappa \equiv \lim_{\omega \to 0} rac{2T
ho_{
m E}(\omega)}{\omega} \; .$$

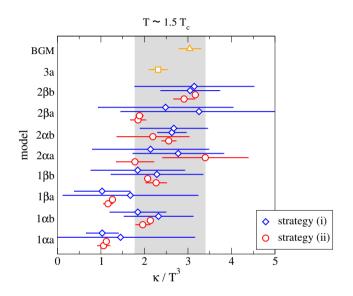

quenched measurements yield a signal for $G_{ m E}(au)$

with "multilevel algorithm" and "tree-level improvement":

clear enhancement at large time separations

extrapolation to the continuum limit


spectral shape is well constrained in the continuum limit


$$\phi_{
m IR}(\omega) \equiv \frac{\kappa \omega}{2T} \, .$$

$$\phi_{\mathrm{UV}}^{(a)}(\omega) \; \equiv \; rac{g^2(ar{\mu}_\omega)C_{\mathrm{F}}\,\omega^3}{6\pi} \; , \quad ar{\mu}_\omega \equiv \mathrm{max}(\omega,\pi T) \; .$$

$$\rho_{\rm E}^{(2\mu i)}(\omega) \; \equiv \; [1 + \sum_{n=1}^{n_{\rm max}} c_n e_n^{(\mu)}(y)] \sqrt{\left[\phi_{\rm IR}(\omega)\right]^2 + \left[\phi_{\rm UV}^{(i)}(\omega)\right]^2} \; .$$

fitting with such interpolations⁸ yields $\kappa > T^3$

$$\kappa = (1.8 - 3.4) T^3.$$

 $^{^{8}}$ final estimate based on models 2*, 3a, BGM because 1* has wrong subleading UV-tail

convert to physical results at $T \approx 1.5 T_{\rm c}$

$$\begin{array}{rcl} 2\pi D\,T & = & 3.7...6.9 \; , \\ \\ \tau_{\rm kin} = \frac{1}{\Gamma_{\rm kin}} & = & (1.8...3.4) \left(\frac{T_{\rm c}}{T}\right)^2 \left(\frac{M}{1.5 \; {\rm GeV}}\right) {\rm fm/c} \; . \end{array}$$

 \Rightarrow close to $T_{
m c}$, charm quark kinetic equilibration could be almost as fast as that of light partons

⇒ to be tackled: better statistical precision, non-perturbative renormalization, unquenching

chemical equilibration rate

summary of recent developments

in full QCD there is a very narrow $\sim e^{-M/T}$ transport peak⁹ easier through NRQCD because annihilation operators known¹⁰ in fact no issue with analytic continuation in NRQCD¹¹ physics could be relevant for future colliders¹²

⁹ D. Bödeker and ML, *Heavy quark chemical equilibration rate as a transport coefficient*, 1205.4987; Y. Burnier and ML, *Charm mass effects in bulk channel correlations*, 1309.1573.

¹⁰ G.T. Bodwin, E. Braaten and G.P. Lepage, *Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium*, hep-ph/9407339; D. Bödeker and ML, *Sommerfeld effect in heavy quark chemical equilibration*, 1210.6153.

 $^{^{11}}$ S. Kim and ML, Rapid ... co-annihilation through bound states in QCD, 1602.08105.

¹² ML and K. Sohrabi, *Charm contribution to bulk viscosity*, 1410.6583.

physical picture (time runs in either direction)

energy released in the inelastic reaction is $2M\gg T\Rightarrow$ the "hard" annihilation process is effectively **local**

soft effects are encoded in the thermal expectation value of a 4-particle operator (" $\mathcal{M}^*\mathcal{M}$ ") describing the hard process¹³

 $^{^{13}}$ e.g. L.S. Brown and R.F. Sawyer, $Nuclear\ reaction\ rates\ in\ a\ plasma,$ astro-ph/9610256.

the idea can be implemented within NRQCD

if θ , η annihilate q and \bar{q} then, like in the optical theorem, decays are contained in an imaginary part of a 4-particle operator:

$$\mathcal{O} = rac{ic_1 lpha^2 \, heta^\dagger \eta^\dagger \, \eta heta}{M^2} + O(lpha^3, v^2)$$

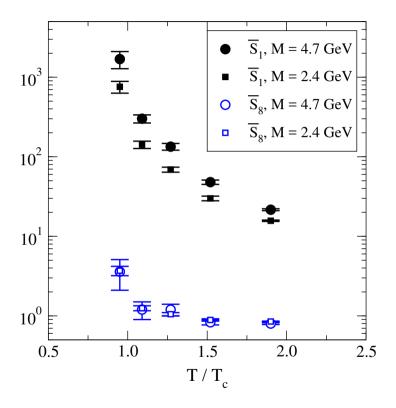
 \Rightarrow a linear response analysis yields

$$n_{
m eq} \Gamma_{
m chem} = rac{8c_1 lpha^2}{M^2} rac{1}{\mathcal{Z}} \sum_m e^{-E_m/T} \langle m | heta^\dagger \eta^\dagger \, \eta heta | m
angle \; .$$

 \Rightarrow denote by \bar{S}_i enhancement factor over pQCD in channel i

thermal expectation values in explicit form

 $G^{ heta}=$ propagator, $lpha,\gamma=$ colour indices, i,j= spin indices


$$P_{1} \equiv \frac{1}{2N_{c}} \operatorname{Re} \langle G_{\alpha\alpha;ii}^{\theta}(\beta, \mathbf{0}; 0, \mathbf{0}) \rangle ,$$

$$P_{2} \equiv \frac{1}{2N_{c}} \langle G_{\alpha\gamma;ij}^{\theta}(\beta, \mathbf{0}; 0, \mathbf{0}) G_{\gamma\alpha;ji}^{\theta\dagger}(\beta, \mathbf{0}; 0, \mathbf{0}) \rangle ,$$

$$P_{3} \equiv \frac{1}{2N_{c}^{2}} \langle G_{\alpha\alpha;ij}^{\theta}(\beta, \mathbf{0}; 0, \mathbf{0}) G_{\gamma\gamma;ji}^{\theta\dagger}(\beta, \mathbf{0}; 0, \mathbf{0}) \rangle ,$$

$$\Rightarrow \bar{S}_1 = \frac{P_2}{P_1^2}, \quad \bar{S}_8 = \frac{N_c^2 P_3 - P_2}{(N_c^2 - 1)P_1^2}.$$

enhanced "singlet" decays, perhaps through bound states

implication for heavy ion collisions

the process splits into "colour-singlet" and "colour-octet" parts

$$\Gamma_{
m chem} ~pprox ~ rac{g^4 C_{
m F}}{8\pi M^2} \left(rac{MT}{2\pi}
ight)^{3/2} e^{-M/T} \ imes ~ \left[rac{1}{N_{
m c}}ar{S}_1 + \left(rac{N_{
m c}^2-4}{2N_{
m c}} + N_{
m f}
ight) \,ar{S}_8
ight] ~.$$

for charm: $\bar{S}_8 \simeq 0.8$ is weighted more than $\bar{S}_1 \simeq 15$

$$\Rightarrow$$
 $\Gamma_{\rm chem}^{-1}\sim 150$ fm/c at $T\approx 400$ MeV, $\Gamma_{\rm chem}^{-1}\sim 40$ fm/c at $T\approx 600$ MeV

quarkonium dissociation

summary of recent developments

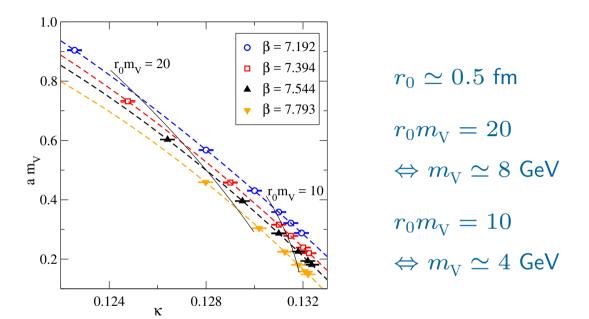
bottomonium: detailed studies with effective theories

- \Rightarrow several lattice spacings with lattice NRQCD¹⁴
- ⇒ towards phenomenology with real-time potential models¹⁵

charmonium: look at pseudoscalar channel (no transport peak)¹⁶

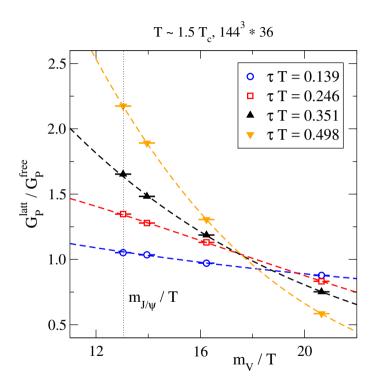
- \Rightarrow unquenched lattice QCD at finite lattice spacing: "up to $1.4T_{\rm c}$ no significant variation is seen in the pseudoscalar channel."
- \Rightarrow continuum limit in quenched QCD:¹⁸ no peaks above $T_{\rm c}$?

¹⁴ e.g. S. Kim *et al, Lattice NRQCD study of ... bottomonium states ...*, 1409.3630.

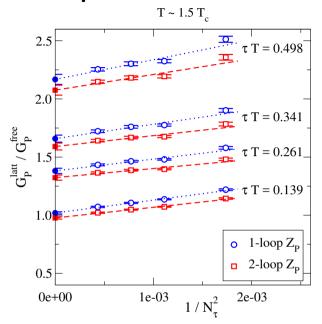

¹⁵ e.g. Y. Burnier et al, ... realistic phenomenology from first principles, 1509.07366.

 $^{^{16}}$ G. Aarts $et\ al,\ ...\ meson\ spectral\ functions\ at\ ...\ high\ temperature,\ hep-lat/0507004.$

 $^{^{17}}$ S. Borsányi et al, Charmonium ... from 2+1 flavour lattice QCD, 1401.5940.

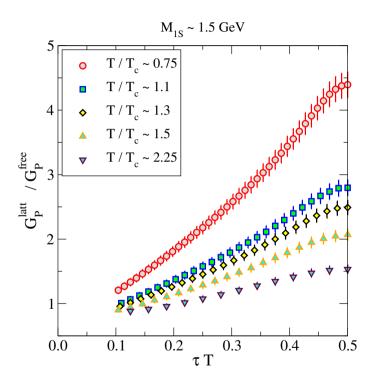

¹⁸ A.-L. Kruse et al, Thermal quarkonium ... in the pseudoscalar channel, 1709.07612.

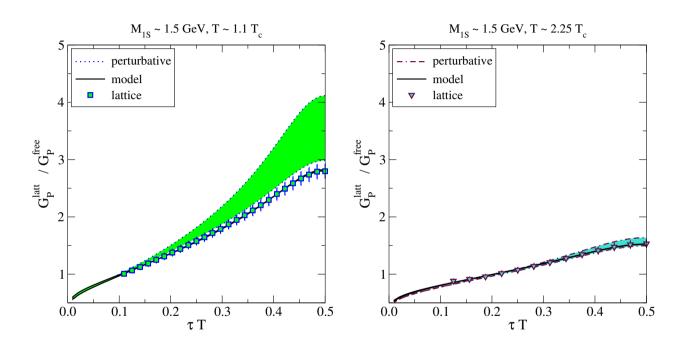
essential for continuum limit is vacuum mass measurement



dependences are smooth ⇒ obtain "lines of constant physics"

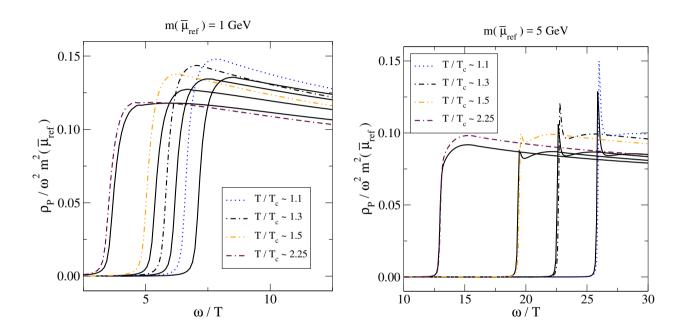
interpolate mass to physical point in thermal correlator


continuum limit after perturbative renormalization¹⁹


⇒ treat difference of 1- and 2-loop factors as an error estimate

¹⁹ S. Capitani *et al, Renormalization and off-shell improvement in lattice perturbation theory,* hep-lat/0007004; A. Skouroupathis and H. Panagopoulos, *Two-loop renormalization of scalar and pseudoscalar fermion bilinears on the lattice,* 0707.2906.

final results at different temperatures



results differ from pQCD but this can be understood

$$\rho_{\,\mathrm{P}}^{\,\mathrm{model}}(\omega) \; \equiv \; A \, \rho_{\,\mathrm{P}}^{\,\mathrm{pert}}(\omega + B) \; . \label{eq:rho_P}$$

best-fit spectral functions (pQCD vs model)

- ⇒ charmonium: threshold shifts compared with pQCD, no peak
- \Rightarrow bottomonium: one peak present up to $1.5T_{\rm c}$

conclusions

- ⇒ great playground for theoretical and numerical progress
- \Rightarrow phenomenological comparisons are also possible²⁰
- ⇒ it is worth identifying observables (perhaps through EFTs) for which problems related to analytic continuation are alleviated
- ⇒ lattice systematics remains to be scrutinized (finite-volume effects, continuum limit, unquenching, topological freezing)
- ⇒ there's room for progress, and it's worth going on!

²⁰ for a review cf. e.g. G. Aarts et al., Heavy-flavor production and medium properties in high-energy nuclear collisions - What next?, 1612.08032.